Improvements in Japanese Voice Search

Ken-ichi Iso¹, Edward Whittaker², Tadashi Emori¹, Jumpei Miyake¹

¹Yahoo Japan Corporation, Tokyo, Japan
²Inferret Limited, Northampton, England

kiso@yahoo-corp.jp, ed@inferret.co.uk, taemori@yahoo-corp.jp, jmiyake@yahoo-corp.jp

Abstract

This paper describes work on Japanese voice-search at Yahoo! Japan. We first describe several implementation details of our WFST-based internal decoder which make the voice-search task more efficient including a simple, but effective, compressed WFST arc representation. This permits a ~2Gb memory decoder process for a 1 million word vocabulary and 35 million N-gram language model. We then describe our baseline system using the decoder and compare it against two open-source decoders, Jucier and Julius. We also describe our initial attempts to adapt the baseline system through simple language model adaptation using manually transcribed anonymized voice queries. To achieve this we present a sequence of WFST operations which preserve consistency of segmentation between manual and automatic transcriptions. We show that even using this simple adaptation method we obtain a relative reduction of up to 4.6% in sentence error rate and 8.2% in character error rate.

Index Terms: ASR, Japanese, voice search, WFST

1. Introduction

Over the past few years voice-input for web-search has become both a hot research topic as well as a practical input method for many users to query web search engines. As a result, it has become both a hot research topic as well as a practical input method for many users. The voice-search task is distinguished from other tasks by the vast amounts of data that are typically available for language model (LM) training and the large vocabularies required to achieve low out-of-vocabulary (OOV) rates. Much has been written to date about research performed on English language voice search[2, 3, 4] but comparatively little regarding other languages[5].

This paper describes initial development work and experiments on Japanese web voice-search that have been performed at Yahoo! Japan. We explain the salient characteristics and implementation details of our decoder and then describe experimental results on samples of anonymized real-world user data, collected via an iOS application. We compare the performance in terms of sentence error rate (SER) and real-time factor (RTF) of two open-source speech decoders against our internal decoder. While our decoder uses 76% less memory than a comparable open-source decoder, we also show that despite the significant requirements of the task good performance can also be achieved using open source software.

We also look at some of the characteristics of the Japanese voice search task, including issues of word segmentation, multiple orthographies and scoring. In addition, we describe a series of simple LM adaptation experiments to improve on the baseline performance by adapting the LM using manually transcribed anonymized voice queries. Our aim with these experiments is to perform both stylistic adaptation (from written to spoken query types) and also adjust the query distribution more towards the types of queries made on mobile devices, which also implicitly includes an element of temporal adaptation of the query distributions.

To facilitate LM adaptation we introduce a method using WFST operations to map from manually transcribed and segmented queries into a segmentation consistent with the current recognition system which then allows us to perform LM adaptation using data from both written and spoken sources.

2. Decoder improvements

In this section we describe our development of a WFST speech decoder that is optimized for the Japanese voice search task and Yahoo! Japan’s server infrastructure. In common with other voice search endeavours[4] we chose to implement the WFST approach over lexical-tree decoding e.g.[9]. We show that the memory required to store a static WFST can quite easily be reduced through appropriate implementation decisions. Our target platform is a large number of 64-bit 48GB RAM servers which means that we can use relatively large WFSTs for decoding and also run multiple ASR processes on a single server.

2.1. Arc label compression

Our decoder is written in C++ and during development we discovered there were many C++-specific issues which had a significant effect on both speed and memory consumption, in particular with respect to the choice of STL containers and how memory is allocated and released.

Beyond these language-specific details the most significant speed-up came from reducing the overall memory usage, which is dominated by having to store the static WFST in memory. As pointed out in [10] a simple storage structure typically uses 16 bytes per arc (4-byte integers for input label, output label and destination state and a 4-byte float for the weight) and 8 bytes per state (4-byte integers for an index to the arc information and for storing the number of arcs exiting a state). Instead of trying to compress the WFST storage globally we preserve the concept of an arc class and aim to minimize the memory required by an individual arc.

For all WFSTs we had encountered, we observed that there were never more than 2^4 unique combinations of input and output label values. Indeed, by far the most
frequent input/output pair has epsilons as labels. Ep-
silons on either input or output label also dominate the
most frequent pairs. While the total possible combina-
tions is bounded by the product of the vocabulary size
and number of physical triphones most of these never
occur in practice. Consequently, storing only the index
lookup allows us to represent the input/output label com-
bination using 3 bytes.

2.2. Arc weight compression

Moreover, in a range of experiments on the voice-search
task we found that quantizing arc weights down to 6 bits
produced no change in SER. For convenience, we chose to
use 8 bits for quantization thus allowing us to pack into a
4-byte integer a 1-byte index (into the quantized 4-byte
floating-point value) together with a 3-byte index to the
input and output labels as shown in Fig. 1. Unpacking
requires only trivial and fast bit-shifting and masking
operations. The 4-byte type storing the destination state
is left as-is for a total 8-byte structure, which is also
appropriate for the 64-bit machines we are designing for.

The WFST state structure is left unaltered to use 8 bytes
total for each state.

\[R = \pi(\text{eps}(\text{min}(\text{det}(C \odot \text{det}(L \text{min}(\text{det}(G \odot T))))) \text{))) \] (1)

where \(\odot \) denotes composition, \(\text{det} \) determinization, \(\text{min} \) minimization, \(\text{eps} \) epsilon normalization, and \(\pi \) auxiliary
symbol removal operations.

3. Baseline Experiments

In this section we describe the data used for training,
development and testing our baseline speech recognition
system and present a comparison of our internal decoder
against two well-known open-source decoders.

3.1. Data

Morphological analysis of Japanese queries is used to seg-
ment text into word-like units comprising a surface form
attached to one or more phonetic realisations of the sur-
face form, for example:

東京都: 東京都 トウキョウト and 一本: イッポう

where the surface realisation (orthography) of the word is
to the left of the “:” and the phonetic realisation, repre-
sented using the katakana script, is shown to the right of
“:”. Combining surface and phonetic information in this
way has been found to improve accuracy, particularly for
recognizing digits and the names of people in context.

For the voice-search task we are fortunate to have
access to a large amount of data. Yahoo! Japan is the
largest search engine in Japan in terms of users and
queries and the anonymized written query stream is avail-
able for training LMs. We use a training set (\(\text{train} \)) of
1.7B unique written queries segmented into units as de-
scribed above. This translates into a total of 7.7B queries
or 35B words (including sentence begin and end tokens).

In addition, since Mar. 2011, we have access to large
numbers of spoken queries through the Yahoo! Japan
iOS search application. 10,000 anonymized spoken ut-
erances collected from this live system in Sept. 2011 are
used for development (\(\text{dev} \)) and 10,000 utterances from
Jan. 2012 are used for evaluation (\(\text{eval} \)). A further 1.6M
spoken transcriptions collected between Mar. 2011 and
Sept. 2011 are used for LM adaptation (\(\text{adapt} \)).

3.2. Vocabulary and Language model

We select the top 1M words (query-frequency weighted)
from \(\text{train} \) to be the vocabulary. This gives an OOV-
rate of around 2.5\% on \(\text{dev} \). We generate a 3-gram
LM from \(\text{train} \) using an alternative implementation of
entropy pruning[11], best described as entropy growing.

Our static recognition network is a standard inte-
grated phone-level WFST \(R \) constructed in the log semir-
ning from \(C \) the context-dependency transducer, \(L \) the
lexicon, and \(G \) the LM, and we use the silence trans-
ducer \(T \) given in Fig. 4 of [14] for silence modelling.
Juicer[8] is used for building the component transduc-
ers and OpenFST[7] for the following WFST operations
on them:

\[R = \pi(\text{eps}(\text{min}(\text{det}(C \odot \text{det}(L \text{min}(\text{det}(G \odot T))))) \text{))) \] (1)

where \(\odot \) denotes composition, \(\text{det} \) determinization, \(\text{min} \) minimization, \(\text{eps} \) epsilon normalization, and \(\pi \) auxiliary
symbol removal operations.

3.3. Acoustic model

Our acoustic model (AM) uses standard 3-state HMMs
with 3000 decision-tree clustered context-dependent
states with 32 Gaussians per state. Feature vec-
tors are 38-dimension MFCCs (12 MFCC features, and
the delta and delta-deltas of power and the MFCCs).
Models are gender-independent and trained on 500
hours of anonymized voice queries collected between
Mar. 2011 and Sept. 2011 using Maximum Likelihood
training followed by Minimum Phone Error discrimina-
tive training[13].

3.4. Integrated WFST

Using the vocab, LM and AM described in Sections 3.2
and 3.3 we construct the integrated speech recognition
WFST using the sequence of operations given in Eqn. 1.
This results in a WFST with 137M arcs and 60M states.

The WFST state structure is left unaltered to use 8 bytes
per state. The WFST state structure is left unaltered to use 8 bytes

Figure 1: Compressed WFST arc class representation.

Alternative implementations such as those described
in [10] can give greater reductions in memory use but
at the expense of far greater complexity in terms of de-
coder implementation and WFST construction. We in-
tentionally chose this compromise between performance
and complexity.

Further state growth using 3.5B words (query-frequency weighted)
from \(\text{train} \) to be the vocabulary. This gives an OOV-
rate of around 2.5\% on \(\text{dev} \). We generate a 3-gram
LM from \(\text{train} \) using an alternative implementation of
entropy pruning[11], best described as entropy growing.

This allows much larger LMs to be grown since all count
statistics do not first need to be read into memory. On
smaller LMs we have confirmed that growing does not re-
result in any significant differences compared to pruning
in terms of both the resulting number of N-grams, perplex-
ity, and SER. Although our entropy growing approach is
performed with respect to a Good-Turing smoothed Katz
back-off model, we then re-smooth the grown model using
absolute discounting. The pruned LM trained on \(\text{train} \)
has 21.6M 2-grams and 13.2M 3-grams.

3.3. Acoustic model

Our acoustic model (AM) uses standard 3-state HMMs
with 3000 decision-tree clustered context-dependent
states with 32 Gaussians per state. Feature vec-
tors are 38-dimension MFCCs (12 MFCC features, and
the delta and delta-deltas of power and the MFCCs).
Models are gender-independent and trained on 500
hours of anonymized voice queries collected between
Mar. 2011 and Sept. 2011 using Maximum Likelihood
training followed by Minimum Phone Error discrimina-
tive training[13].

3.4. Integrated WFST

Using the vocab, LM and AM described in Sections 3.2
and 3.3 we construct the integrated speech recognition
WFST using the sequence of operations given in Eqn. 1.
This results in a WFST with 137M arcs and 60M states.

The number of unique input/output label pairs is 5.7M.
All arc weights are then quantized into 8 bits using Qc-
cPack\(^3\).

\(^3\)http://qccpack.sourceforge.net

INTERSPEECH 2012
3.5. Japanese scoring metrics

Due to the segmentation and orthography issues associated with Japanese we typically use several metrics to determine performance. While others have used WebScore@N[12] as the test of recognition accuracy we choose not to use it since it is difficult to control for changes in the underlying search engine. Instead, we employ a form of sentence error rate (SER) which first tries to match the orthography character-for-character, then backs off to an exact pronunciation match if it fails. We also use the character error rate (CER).

3.6. Performance comparison

In Fig. 2 we plot SER vs. RTF on eval for our internal decoder (which always generates lattice traceback information) and two open-source decoders: (1) the WFST-based decoder Juicer v1.0.0 (decoderLite)[8] and (2) the lexical-tree based decoder Julius[9] v4.2.1 which uses a 2-gram forward pass followed by a 3-gram backward pass for decoding. For each decoder parameters (primarily beam, band, LM weight and insertion penalty (and also phone-end beam for Juicer)) were optimized on dev and results are reported on eval.

All experiments were performed on a 2xCPU Intel(R) Xeon(R) X5675 @3.07GHz each with 6 cores, 12MB caches and 128GB RAM and running CentOS 5.4.3 64-bit. All decoders were compiled using GCC 4.1.2.

Comparing the performance at each decoder’s real-time performance point we see that our internal decoder requires about 2.3GB memory whereas Juicer requires 9.9GB (330% more), and Julius around 1.6GB (30% less). To obtain better results with Julius (second curve from top) it was necessary to run the first pass with an unpruned forward 2-gram. Pruning the LMs to the same extent as used in the other decoders results in much worse performance (top-most curve). Memory usage and RTF go up with increasing beam for all decoders. In subsequent experiments we use the same configuration of our internal decoder running at 1xRTT to generate lattices for subsequent rescoring.

4. LM Adaptation Experiments

In this section, we perform simple LM adaptation by interpolating the baseline LM which was trained only on written queries (train) with an LM trained on manually transcribed spoken utterances (adapt) as follows:

\[
P(w | h) = \lambda \cdot P_{\text{train}}(w | h) + (1 - \lambda) \cdot P_{\text{adapt}}(w | h)
\]

where \(\lambda \) is determined empirically for each size of adaptation data by minimizing SER or CER, accordingly, on dev lattices, generated using the baseline LM.

4.1. Japanese text segmentation / normalization

Typically, a Japanese morphological analyser is used to perform word segmentation of written text, but it has the following drawbacks for spoken text transcribed by humans. Firstly, it segments the orthographic representation of the input text and ignores any spoken information which is sometimes useful to select the correct word segmentation. For example, segmentation of the query 東京都 has two alternatives 東京都 and 東京 京都 (the pronunciation differs according to the segmentation: “tokyo to” vs. “higashi kyoto”) but only the former is compatible with the original manual transcription. Secondly, the word definition in a morphological analyser is optimized for its performance and efficiency. For example, the query 一本 is usually segmented into 一 and 本 by popular morphological analysers. However, our ASR word definition favours 一本 as a single word since its pronunciation has a nasal sound which we wish to preserve.

Suffice to say there is no agreed-upon definition of a word in Japanese. For manual transcriptions both the orthographic form and the spoken pronunciation are transcribed using whatever segmentation the transcriber deems appropriate. Manual transcription and segmentation will therefore likely differ both among transcribers and also automatic segmentation systems. Moreover, simply ignoring the initial manual segmentations by concatenating and re-segmenting automatically does not always work.

To integrate the manual transcriptions with our existing LMs, we first have to map to the required segmentation while preserving the human annotated surface form and pronunciation. To ensure consistent segmentation between human transcribed text and our existing integrated WFST we perform the following WFST operations:

- **Step 1:**
 - Prepare a WFST \(P \) from the pronunciation of transcribed query; input and output symbols are tri-phones.
 - Prepare a WFST \(O \) from orthography of transcribed query; input and output symbols are orthographic characters.
 - Prepare a dictionary WFST \(D \); input symbols are orthographic characters and outputs are words.

- **Step 2:**
 - Compute \(P \) with the integrated phone-level recognition transducer \(R \) from Eqn. 1. Obtain an N-best candidate WFST \(N \) with triphone input labels and word output labels.

- **Step 3:**
 - Project output labels in \(N \) to give \(\text{proj}(N) \) with word input and output labels.

- **Step 4:**

![Figure 2: Sentence error rate vs. RTF curve of the three different recognizers (internal, Julius and Juicer) on eval over a range of decoder parameters optimized on dev.](image-url)
Compose D with $\text{proj}(N)$ and obtain an N-best candidate WFST $D \circ \text{proj}(N)$ with orthographic character input and word output labels.

- Step 5:
 - Compose O with $D \circ \text{proj}(N)$ and obtain an N-best candidate WFST $O \circ D \circ \text{proj}(N)$ compatible with both spoken and orthographic information in the transcribed query.

If the result is not empty $O \circ D \circ \text{proj}(N)$ will have the same orthography and pronunciation as that given by the human transcriber and we can select the highest-scoring path which will have a segmentation consistent with the existing integrated recognition WFST.

4.2. Experiments

Ensuring that transcriptions from dev and eval are excluded, we sampled transcriptions from adapt in powers of 2, from 7,813 up to 1M transcriptions. For each sample size, we built a 3-gram LM using absolute discounting and Katz back-off and interpolated it with the baseline LM. Using interpolation weights in increments of 0.05 we re-scored dev set lattices to determine the interpolation weight which minimized SER or CER, as appropriate. We then re-scored eval set lattices using the same weight. The optimal interpolation weights, as determined on dev, the SER, CER and relative improvements over the baseline values on eval are shown in Table 1. We see there is a reasonably consistent reduction in both SER and CER with increasing number of adaptation transcriptions, with relative reductions of up to 4.6% in SER and 8.2% in CER when adapting with 1M spoken transcriptions.

![Table 1: SER and CER on eval set lattices re-scored using optimal interpolation weight determined on dev of each adaptation LM which was trained on different numbers of transcriptions.](image)

5. Conclusion and Further Work

In this paper we have presented work on Japanese voicesearch at Yahoo! Japan. We have described the improvements to our internal decoder in terms of reduced memory requirements for representing the static WFST by exploiting the distribution of input and output labels to compress the arc representation and quantizing arc weights down to 8 bits. Using identical LMs trained on 7.7 billion written Japanese search queries we compared the performance of our internal decoder against two well-known open-source decoders and showed that our decoder runs with a higher accuracy in real-time and uses 2.3Gb of memory; this is 76% less than the comparable open-source decoder.

To integrate spoken transcriptions with our existing LM we presented a sequence of WFST operations to map the transcriptions into a consistent segmentation. Using this technique we then performed simple LM adaptation of the baseline LM using up to 1 million transcribed voice queries which gave up to 4.6% relative reduction in sentence error rate and 8.2% relative reduction in character error rate.

In future work we will look at how to perform more effective language model adaptation and also use automatic, instead of manually, transcribed voice queries.

6. References