Large-Scale Characterization of Mandarin Pronunciation Errors Made by Native Speakers of European Languages

Nancy F. Chen†, Vivaek Shivakumar*, Mahesh Harikumar†, Bin Ma†, Haizhou Li†
†Institute for Infocomm Research, Singapore ‡Nanyang Technological University, Singapore
*Massachusetts Institute of Technology, Cambridge, MA, USA

{nfychen, mabin, hli}@i2r.a-star.edu.sg, vivaek@mit.edu, mahesh004@e.ntu.edu.sg

Abstract

In this work, we quantify common tonal and phonetic errors made by second language learners of Mandarin Chinese. Pronunciation patterns of 300 native speakers of European languages are analyzed. Tonal errors (30.56%) are found to be more prevalent than phonetic ones (8.71%). Common errors include overemphasis of Tone 3 and inadequate aspiration of affricate consonants. Decision tree clustering was used to further characterize these error patterns with their tonal and phonetic context. Our findings are potentially useful in second language education and in computer assisted language learning.

Index Terms: computer-aided pronunciation training, second language (L2) acquisition, lexical tones, aspiration, affricate, Mandarin Chinese

1. Introduction

An increasing number of people are learning Mandarin Chinese as a second language (L2), yet limited research has focused on quantitatively characterizing common mispronunciations on a large-scale basis. In this work, we attempt to fill in this gap. It is often qualitatively stated as conventional wisdom that L2 learners of Mandarin have difficulty acquiring affricate and fricative consonants [1, 2], which are peculiar to many European languages (except some Slavic languages like Polish which have retroflex and palatal fricatives [3]). However, few research studies have quantitatively characterized the mispronunciation patterns of these consonants. In contrast, many L2 Mandarin studies focus on non-native lexical tone productions (e.g., [4, 5]), since most resource-rich languages lack lexical tones. Reference [4] evaluated how perceptual training helped improve English speakers' tone production. Reference [5] analyzed tone errors and its relationship with prosodic phrasing in L2 Mandarin. These studies provide a foundation of how to help L2 learners acquire Mandarin Chinese.

Our work extends past studies by (1) examining a larger set of speakers (an order of magnitude more than [4, 5]), and (2) characterizing L2 Mandarin mispronunciations of both tones and phones using tonal and phonetic context. The latter extension is based on our knowledge that native tone productions in tonal languages are affected by tonal context [6], and that dialect studies have shown that acoustic implementations of phonemes can often be characterized using phonetic context [7]. Our analyses help predict when and where non-native mispronunciations are more likely to occur. These findings can potentially help refine computer-assisted language learning software systems (e.g., [8]) or classroom exercises.

2. Experiment Design

2.1. Mandarin Phonology Background

We elaborate on lexical tones in Mandarin below: Tone 1 (hight-level): a steady high pitch, similar to curt commands in English (e.g., What?!); Tone 3 (dipping): the pitch lowers and then rises within the same syllable; Tone 4 (falling): a short tone with a sharp fall in pitch, similar to curt commands in English (e.g., Stop!). Tone 5 (or the zeroth tone) is a neutral tone, or viewed as lack of tone; it is analogous to an unstressed syllable.

2.2. Phonetic Symbols

Pinyin is a phonetic system used to transcribe Chinese characters into Latin script. In Pinyin, syllables are separated by white space, and the tone of a syllable is appended after the final. For example, the word afternoon is phonetically represented as ‘xià4 wú3’, where ‘x’ and ‘w’ are the initials, ‘ia’ and ‘u’ are the finals, 4 and 3 are the tones. In this paper, Pinyin symbols are encased in single quotes (e.g., ‘z’ is the voiceless, unaspirated, alveolar affricate in Mandarin); International phonetic alphabet (IPA) symbols are encased in “/ /” or “[ ]” (e.g., /z/ is the voiced alveolar fricative).
The final is a velar nasal (i.e., ‘ng’ in Pinyin).

The syllable is at an utterance final position.

The final is a nasal (i.e., ‘n’, ‘ng’ in Pinyin).

40.17% 45

32.15% 30.72% 31.15%

25.78% 24.28%

30ate/g3(%)

Produced Tone

Tone 5

Tone 4

Tone 3

Tone 2

Tone 1

Overall

Figure 1: Lexical tone error distribution.

Table 1: Non-distinctive feature attributes used in Figure 2 and Figure 5. L2 denotes second language.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UttInit/ical</td>
<td>The syllable is at an utterance initial position.</td>
</tr>
<tr>
<td>UttFinal</td>
<td>The syllable is at an utterance final position.</td>
</tr>
<tr>
<td>SonorantInitial</td>
<td>The initial syllable is a sonorant (i.e., ‘w’, ‘y’, ‘I’, ‘y’, ‘m’, ‘n’ in Pinyin).</td>
</tr>
<tr>
<td>NasalFinal</td>
<td>The final is a nasal (i.e., ‘n’, ‘ng’ in Pinyin).</td>
</tr>
<tr>
<td>FinalVentralNasal</td>
<td>The final is a velar nasal (i.e., ‘ng’ in Pinyin).</td>
</tr>
<tr>
<td>VowelFinal</td>
<td>The final is a vowel.</td>
</tr>
<tr>
<td>Short</td>
<td>Syllable length ≤ 3 characters in Pinyin.</td>
</tr>
<tr>
<td>1*</td>
<td>The L2 learner produced Tone 1.</td>
</tr>
<tr>
<td>3*</td>
<td>The L2 learner produced Tone 3.</td>
</tr>
</tbody>
</table>

(e.g., English, German); 32% Romance (e.g., French, Spanish, Italian); 15% Slavic (e.g., Russian). Among individual languages, English has the largest number of speakers (119 speakers; 40% of total data).

Preliminary analysis showed that the general trends of the error patterns were insensitive to the speaker’s native language (exceptions of phonetic errors are discussed in Section 3.2.3). Therefore we collapsed the speaker groups of native languages to increase the sample size of our study.

2.4. Decision Tree Clustering

Decision tree clustering [9] is a customary approach in automatic speech recognition to group phones with similar acoustic properties together. We chose to use decision tree clustering because it provides intuitive results that are linguistically informative to second language learners and educators.

For each underlying tone, a set of attributes were iteratively chosen through decision tree clustering to characterize its corresponding non-native surface tones. Attributes include distinctive features [10]. Attributes not derived from standard distinctive features were also used, including utterance position of syllable in question, neighboring syllables’ underlying tones, and neighboring syllables’ surface tones, which were derived from observations at Mandarin classes at MIT. In Table 1 we only list non-distinctive-feature attributes determined from decision tree clustering results in Figures 2 and 5. Similar to characterizing tones, we used decision tree clustering to determine attributes characterizing surface pronunciations for each underlying initial or final.

3. Experiments

3.1. Lexical Tone Errors

3.1.1. Context-Independent Error Patterns

We first analyze the tone errors by aligning the underlying ground-truth tone sequences with the transcribed surface tone sequences. The mispronunciation rates for each tone are listed in Figure 1. When collapsing data from all lexical tones, nearly 1 out of every 3 syllables (error rate: 30.56%) are produced incorrectly. Among the 5 tones, Tone 3 is the most challenging for Mandarin learners (40.17% error rate), while Tone 1 and Tone 5 are the easiest (25.78% and 24.28% error rate, respectively). This trend is similar to that reported in [4]. Among the Tone 3 errors, the majority (46%) are mispronounced as Tone 2, which corresponds to [4]. Over 40% of the Tone 2 and Tone 4 errors are mispronounced as Tone 1; 45% of Tone 1 errors and 36% of Tone 5 errors are mispronounced as Tone 4.

3.1.2. Context-Dependent Error Patterns

In this section, we further investigate whether tonal and phonetic context can help obtain more refined characterizations of the mispronunciations.

A decision tree was grown for each of the five tones. All syllables that belong to a particular underlying tone are the samples at the root node. The samples are recursively split into leaf nodes to reduce entropy. The surface tones are the classification labels. The stop criteria for splitting were based on minimal split size and minimal leaf node size. The optimal values of these parameters leading to the lowest classification error were tuned on the development set.

Figure 2 lists the top pronunciation error patterns on the test set. The descriptions of the attributes used are listed in Table 1. Below we elaborate on some general trends.

Confusion between Tone 1 and Tone 4. Underlying Tone 1 and Tone 4 are most likely mispronounced as Tone 4 and Tone 1 respectively, regardless of phonetic/tonal context, as seen in the previous section. From the clustering results, we were able to identify that there are certain exception cases: Error Patterns T1a and T1b specify cases where Tone 1 is most likely mispronounced as Tone 3; in all other conditions, Tone 1 is mostly likely mispronounced as Tone 4. Error Pattern T4a specifies when Tone 4 is most likely mispronounced as Tone 2; in all other conditions, Tone 4 is most likely mispronounced as Tone 1.

Over emphasizing Tone 3. In spoken Mandarin, when a Tone 3 syllable is not at the end of an utterance, Tone 3 is often realized as half-third: the pitch does not rise again after falling. At the end of an utterance, however, Tone 3 is usually acoustically implemented as a full third tone, which ends with a rising pitch. Beginner learners might therefore over exaggerate the rising portion of Tone 3 when it is at the end of an utterance, making Tone 3 sound like Tone 2 (see Error Patterns T3a and T3b in Figure 2). This exaggeration occurs less if the preceding tone was already produced as Tone 3, since consecutive Tone 3’s are difficult to pronounce. In these cases, the latter Tone 3 is more likely to be produced as Tone 1, despite being in the final position of an utterance (see Error Pattern T3c in Figure 2).

It has been hypothesized that the reason Tone 3 is difficult to acquire is due to the novelty of the required pitch manipulation [4]. Even after learners are able to perceive Tone 3, they still might not be able to produce it correctly [4]. The difficulty of acquiring Tone 3 is not a proprietary to non-native speakers. Tone 2 and Tone 3 have been found to be confusing in both first
language acquisition [11, 12] and second language acquisition [13, 14].

Rising tone at utterance final. When non-native speakers lack confidence in their pronunciation, which is not uncommon, there is a tendency to raise their pitch at the end of utterances, leading to the production of Tone 2 for the last syllable of the utterance. (See Error Patterns T4a, T3b in Figure 2.)

Tone 5 elongation. Most syllables specified in Error Pattern T5a in Figure 2 are ‘men5’, the plurality particle in Mandarin Chinese. The tendency to produce ‘men5’ as ‘men2’ could be due to the longer syllable length caused by the presence of a sonorant initial and sonorant final. (A syllable like ‘men5’ is longer in duration than other syllables because most Mandarin syllables do not include nasals in the final, and initials are optional in Mandarin syllable structures.)

Common tone-pair mapping. The underlying tone pair (2,4) is to often misproduced to surface tone pair (3,1). Error Patterns T2b and T4b in Figure 2 could partially explain this trend. In addition, if Tone 2’s pitch level is too low, it is hard to produce the following Tone 4 with an even lower pitch. Maintaining a similar pitch level causes the perception of Tone 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Error Pattern</th>
<th>Probability (No. of samples)</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>[+3] → [+3] / [+3][+3] [+3][+3]</td>
<td>0.403 (2781)</td>
<td></td>
</tr>
<tr>
<td>T1b</td>
<td>[+3] → [+3] / [+3][Initial][Initial][Initial]</td>
<td>0.519 (242)</td>
<td></td>
</tr>
<tr>
<td>T1c</td>
<td>Default (all contexts other than T1a, T1b): [+3] → [+4]</td>
<td>0.48 (11670)</td>
<td></td>
</tr>
<tr>
<td>T2a</td>
<td>[+3] → [+3] / [+3][Initial][Initial]</td>
<td>0.5 (6775)</td>
<td></td>
</tr>
<tr>
<td>T2b</td>
<td>[+3] → [+3] / [+3][Initial][Initial][Initial]</td>
<td>0.521 (654)</td>
<td></td>
</tr>
<tr>
<td>T3a</td>
<td>[+3] → [+3] / [+3][Initial][Initial][Initial][Initial]</td>
<td>0.562 (4245)</td>
<td></td>
</tr>
<tr>
<td>T3b</td>
<td>[+3] → [+3] / [+3][Initial][Initial][Initial][Initial][Initial]</td>
<td>0.642 (2906)</td>
<td></td>
</tr>
<tr>
<td>T4a</td>
<td>[+4] → [+3] / [+4][Initial][Initial]</td>
<td>0.428 (2906)</td>
<td></td>
</tr>
<tr>
<td>T4b</td>
<td>Default (all contexts other than T4a): [+4] → [+1]</td>
<td>0.45 (25048)</td>
<td></td>
</tr>
<tr>
<td>T5a</td>
<td>[+3] → [+3] / [+3][Initial][Initial][Initial]</td>
<td>0.570 (509)</td>
<td></td>
</tr>
<tr>
<td>T5b</td>
<td>[+3] → [+3] / [+3][Initial][Initial][Initial][Initial][Initial][Initial][Initial]</td>
<td>0.601 (589)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Context-dependent error patterns for tones. Format is adopted from phonological rules [15, 16]: [underlying ground-truth speech segment] → [surface speech segment] / [left context description] / [segment of interest description] / [right context description], where speech segment refers to a syllable, an initial, or a final. Probability denotes the conditional probability of the substitution error (in the test set) given the context listed in the Error Pattern column.

3.2. Phonetic Errors

3.2.1. Context-Independent Error Patterns

The phonetic error rate is 8.71%. Phonetic error rate is defined as the total number of initial or final errors over the total number of syllables/characters. If we break down phonetic errors, 6.51% initials and 7.69% finals were mispronounced in the total 292,756 syllables in the training set.

Figure 3 shows the most mispronounced initials and their corresponding top substitution errors are lightly shaded bars (when disregarding phonetic context). Format of error: underlying ground-truth initial → surface initial.

Figure 4 shows the most mispronounced finals and their corresponding top substitution errors are lightly shaded bars (when disregarding phonetic context). Format of error: underlying ground-truth final → surface final.

3.2.2. Context-Dependent Error Patterns

When comparing errors to context, 292,756 syllables in the training set.

The phonetic error rate is 8.71%. Phonetic error rate is defined as the total number of initial or final errors over the total number of syllables/characters. If we break down phonetic errors, 6.51% initials and 7.69% finals were mispronounced in the total 292,756 syllables in the training set.

Figure 3 shows the most mispronounced initials and their corresponding top substitution errors. We see that 7 out of 10 of these top substitution errors are related to aspiration. This trend is possibly due to the fact that while aspiration is an important feature differentiating Mandarin and Peking languages, it is not necessarily so in other European languages.

Figure 4 shows the most mispronounced finals and their corresponding top substitution errors. We see that 8 out of 10 of these top substitution errors are related to nasals, and among these errors more than 60% are fronting of velar nasals, implying that velar nasals are more challenging to produce correctly.
3.2.2. Context-Dependent Error Patterns

The decision tree clustering implementation details are similar to those in Section 3.1.2. After decision tree clustering, we found that the error patterns of finals were context independent, while those of initials are context-dependent. Common initial errors obtained through decision tree clustering are listed in Figure 5. We discuss these mispronunciation trends in more detail below.

Aspiration/De-aspiration: see Error Pattern No. Z2, J1, J3, Q1, Q3, Ch2, Zh1 in Figure 5. Among these 18 mispronunciation patterns, 1/3 are related to improper aspiration. Many of the native languages of the speakers have no aspiration distinction among different phonemes. Some languages do not even have affricate consonants at all (e.g., French and Spanish). Therefore, these speakers might have difficulty controlling aspiration appropriately. This aspiration error also occurs frequently among stops (/p/, /t/, /k/), especially for native speakers of Romance languages. (See Section 3.2.3.)

Frication: see Error Pattern No. Z3 in Figure 5. The Pinyin symbol ‘z’ represents the voiceless, unaspirated, alveolar affricate in Mandarin, while it represents the voiced alveolar fricative in many other Romanization schemes (e.g., English or IPA). This potential confusion across phonetic systems might make speakers pronounce the alveolar affricate (‘z’ in Pinyin) as an alveolar fricative (‘s’ in Pinyin) instead.

Backing: see Error Pattern No. J2, J4, Q2, X1 in Figure 5. Rounded vowels prompt the place of articulation to move backwards, which could turn a palatal affricate to its retroflex counterpart. It has also been reported that rounding might be an enhancing gesture for the retroflex feature [17], which potentially explains why palatal affricates before a rounded vowel becomes retroflex.

For Error Pattern No. Q2, the four syllables that fit this context are ‘qi’, ‘que’, ‘quan’, and ‘quan’. The ‘u’ in these syllables is the close/high front rounded vowel /y/ in IPA as opposed to the close/high back rounded vowel/u/ in IPA. If this front vowel /y/ is mispronounced, the aspirated palatal affricate consonant (‘q’ in Pinyin) easily becomes backed to the aspirated retroflex affricate (‘ch’ in Pinyin). Similar to its affricate counterparts, the palatal fricative (‘x’ in Pinyin), could also become retroflex (‘sh’ in Pinyin) due to the rounding of its following vowel.

Gliding: see Error Pattern No. J5 in Fig. 5. The unaspirated palatal affricate before the high-front-vowel/palatal-glide approaches the palatal approximant, when given sufficient frication or lack of clear articulation.

Fronting: see Error Patterns No. Ch1, Sh1 in Figure 5. The Pinyin symbol ‘i’ usually refers to the high front vowel /i/ in IPA. When the Pinyin symbol ‘i’ is followed by retroflex fricatives and affricates, ‘i’ is acoustically implemented as a mid-back vowel. However, L2 learners of Mandarin might still pronounce this vowel as the high front vowel /i/ in IPA, making the retroflex consonant before the vowel more fronted, which becomes a palatal consonant instead.

3.2.3. Native Language Dependence Errors

The native languages of the speakers generally did not affect the overall mispronunciation patterns. However, this was not the case for the de-aspiration of stop initials. Note that ‘p’ in Pinyin corresponds to the aspirated, voiceless, labial stop [pʰ] in IPA, while ‘b’ in Pinyin corresponds to the unaspirated, voiceless, labial stop [p] in IPA. Aspirated stops (‘p, t, k’ in Pinyin) produced as unaspirated counterparts (‘b, d, g’ in Pinyin) were more than twice as likely from native speakers of Romance languages (7.00% error rate) than from those of other languages (2.96%). This discrepancy might be because there are only unaspirated stops in Romance languages [18], while there are both aspirated and unaspirated allophones for voiceless stops in Germanic languages [19]. For example, in American English /p/ is aspirated in words like pray, but unaspirated when preceded by an obstruct consonant as in spray [20]. It is interesting to note that though Slavic languages only have unaspirated stops [21], their native speakers made as few mistakes as those of Germanic languages.

4. Conclusions

We quantified Mandarin mispronunciation patterns of 300 native speakers of European languages. These speakers made more tonal errors (30.56%) than phonetic ones (8.71%). We characterized these errors using contextual information such as the distinctive features of neighboring syllables. Most error patterns (e.g., overemphasis of Tone 3, inadequate aspiration) were similar across native language groups, but not the de-aspiration of stop initials, which were more prevalent among Romance language speakers. To foster research in L2 acquisition and computer assisted language learning, we plan to further refine the iCALL corpus used in this work and publicly release it afterwards.
5. References


