
Ibuki Nakamura†, Nobuaki Minematsu‡, Masayuki Suzuki†, Hiroko Hirano†, Chieko Nakagawa∗
Noriko Nakamura†, Yukinori Tagawa†, Keikichi Hirose†, Hiroya Hashimoto†

† The University of Tokyo, Tokyo, Japan
‡ Northeast Normal University, Jilin, China
∗ Waseda University, Tokyo, Japan

{nakamura,suzuki,mine,hiroya,hirose}@gavo.t.u-tokyo.ac.jp

1. Introduction

This paper introduces the first online and free framework for teaching and learning Japanese prosody including word accent and phrase intonation. This framework is called OJAD (Online Japanese Accent Dictionary) [1] and it provides three functions. 1) Visual, auditory, systematic, and comprehensive illustration of patterns of accent change (accent sandhi) of verbs and adjectives. Here only the changes caused by twelve kinds of fundamental conjugation are focused upon. 2) Visual illustration of the accent pattern of a given verbal expression, which is a combination of a verb and its postpositional auxiliary words. 3) Visual illustration of the pitch pattern of an any given sentence and the expected positions of accent nuclei in the sentence. The third function is implemented by using an accent change prediction module that we developed for Japanese text-to-speech (TTS) synthesizers [2, 3].

Abstract

This paper introduces the first online and free framework for teaching and learning Japanese prosody including word accent and phrase intonation. This framework is called OJAD (Online Japanese Accent Dictionary) [1] and it provides three functions. 1) Visual, auditory, systematic, and comprehensive illustration of patterns of accent change (accent sandhi) of verbs and adjectives. Here only the changes caused by twelve kinds of fundamental conjugation are focused upon. 2) Visual illustration of the accent pattern of a given verbal expression, which is a combination of a verb and its postpositional auxiliary words. 3) Visual illustration of the pitch pattern of an any given sentence and the expected positions of accent nuclei in the sentence. The third function is implemented by using an accent change prediction module that we developed for Japanese text-to-speech (TTS) synthesizers [2, 3].

Index Terms: language education, Japanese prosody, accent sandhi, OJAD, speech synthesis, assessment experiments

In Japanese, regional accents are often exposed as differences of word accent control [6]. In the Japanese society, public speaking is almost always done in Tokyo dialect, which is referred to as the standard Japanese. Many learners of Japanese are from other Asian countries and their mother tongue is often a tonal language[2]. Of course, they are much more sensitive to and aware of syllable-based pitch control than normal Japanese. In the current situation of Japanese education, even when learners are eager to know how to control word accent in the standard Japanese, they have to fail in finding good learning materials because no good teaching/learning material of Japanese word accent control exists to the best of the authors’ knowledge.

In this paper, we attempt to solve this serious problem by providing the very first online and free framework for teaching and learning Japanese prosody including word accent and phrase intonation. In development, we use an accent sandhi prediction module [2, 3] that we developed for Japanese TTS systems to visualize the prosodic structure hidden in a given sentence. Although TTS technologies have been used in CALL development in previous studies [7, 8], a main focus was always put on how to use synthesized speech output. In this paper, we don’t use speech output but use the internal module of a TTS system as visualizer of the hidden prosodic structure in a given sentence because this prosodic structure is what learners want to know. It should be noted that direct visualization of the output of the accent sandhi module is not good pedagogically. The output of the module is often too complicated for learners to learn. For them, as simple prosodic structure as possible with naturalness enough is desired. In tight collaboration with Japanese teachers, the forth to the seventh authors, we design simplification rules to derive the simplified prosodic structure [9]. This paper also shows some experimental results of subjective and objective assessment of the proposed framework.

1This performance can be compared to low phonological awareness of dyslexic individuals.
2Japanese is not a tonal language.
2. Realization of the three functions

2.1. Comprehensive illustration of accent changes

Since the accent changes found in conjugation of verbs and adjectives is relatively regular and systematic, we decided to realize a system that can show the accent changes due to conjugation of these words. Users type verbs and/or adjectives of interest to know their accent changes. Here, twelve kinds of fundamental conjugation were adopted and their accents are displayed in a table. Fig. 1 shows an example. Seven widely-used textbooks were selected and all the verbs and adjectives found in them were manually extracted. The total number of words is about 3,500 and that of their conjugated forms is about 42,000. The accent pattern of each form was obtained as follows.

1) Automatic estimation of the accent pattern of the form by using an accent nucleus position estimator [2, 3] and 2) manual inspection of the results and manual correction if needed. The resulting accent patterns were stored in a database. It should be noted that the system does not estimate the accent patterns of the conjugated forms of an input word on the fly but searches the database for the accent patterns. We can say that the system is effectively error-free unless users commit typing errors.

The pitch curve of each form is drawn on its HIRAGANA representation by using the generation process model, so called as the Fujisaki model [10]. By controlling the model parameters, it is easy to realize a pitch pattern of complete mora isochrony. The drawn pattern is of course not realistic but what has to be presented to users is not observed pitch patterns but the pitch pattern “images” that teachers want to show to learners. This is the reason why we adopted the Fujisaki model.

Each of these forms was read aloud by a voice actor and a voice actress. About 84,000 speech samples were recorded and they were segmented semi-automatically using voice activity detection techniques. In Fig. 1, by clicking a blue/pink icon, users can listen to a male/female speech sample of each form, respectively. A series of the samples on a row or on a column can be heard by clicking an icon of that purpose. These samples can be downloaded onto users’ PCs or portable devices.

Since all the words are directly from the textbooks, we implemented a very flexible user interface to search the database. Instead of typing specific verbs or adjectives, users can indicate a specific lesson of a specific textbook to know the accent patterns of the conjugated forms of all the verbs and adjectives that are introduced to that textbook for the first time in that lesson. Each word is assigned “difficulty level to learn” as attribute, which is from another Japanese word database developed at University of Tsukuba [11]. Using this attribute, for example, users can know the accent patterns of all the verbs and adjectives of a specific textbook that beginners should learn. Other useful options are available for practical use in a classroom. Interested readers should visit the web site of OJAD [1].

2.2. Illustration of the accent of long verbal expressions

The first function only illustrates the accent patterns of the twelve fundamental conjugated forms of verbs and adjectives. Since Japanese is an agglutinative language, a verb can be combined with multiple postpositional and auxiliary words. For example, verb “斷る” (refuse) can be concatenated to “そう”, “に”, “なる”,”た”,”こと”,”が”,”ある” in this order. By conjugation, “断る” is finally changed into “断りそうになったことがある” and this kind of long verbal expressions can be found even in a textbook for beginners. This means that only the first function cannot explain the accent control to read verbal expressions in that textbook completely. So, we developed another system as the second function to show the accent pattern of a given long verbal expression. By inspecting a Japanese textbook for beginners manually, we found 320 kinds of postpositional expressions combined to verbs. Then, we checked the possible accent patterns for each of the postpositional expressions. Japanese verbs can be clustered into two groups (起源式 and 平板式) based on their word accent and into three groups (第 1 グループ to 第 3 グループ) based on their conjugation manner. If the accent-based group and the conjugation-based group of a given verb is known, the accent pattern of any verbal expression comprised of that verb and one of the 320 postpositional expressions can be correctly predicted. In the system, by running morphological analysis to an input verbal expression with MeCab [12], the verb and its postpositional expression are detected automatically. Using the attributes of the verb estimated by MeCab, the system can identify the accent-based group and the conjugation-based group for that verb. Then, the resulting accent pattern (the accent nucleus position) is visually presented with its pitch pattern drawn by the Fujisaki model.

Fig. 2 shows several examples of illustrating the pitch pattern of a long verbal expression. It is easily expected that a verbal expression including an unknown postpositional expression can be typed as input. Our database contains the information of the 320 expressions only. The top right figure shows the result of typing “断りそうになったことがある” and the bottom right one shows that of typing “断りそうになったことがあるので”, where “ので” is added to the first query. If the system can find the postpositional expression in the database, it shows the accent pattern in a red rectangle. If the system cannot, however, it shows the accent pattern of the most similar expression, which is found in the database, in a pink rectangle. Availability of the system response is indicated by color.

2.3. Illustration of the pitch pattern of any input sentence

The first and second functions only focus upon verbs and adjectives. Word accent changes are not only found in these words but also in other words such as nouns. This means that the first two functions are not enough for learners to read sentences adequately in textbooks. So, as the third function, we developed
Table 1: Assessment of the three proposed systems (%)

<table>
<thead>
<tr>
<th></th>
<th>1st system</th>
<th>2nd system</th>
<th>3rd system</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Do you want to use the system in your class?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, definitely</td>
<td>38.7</td>
<td>29.0</td>
<td>42.6</td>
</tr>
<tr>
<td>Yes, if needed</td>
<td>59.7</td>
<td>64.5</td>
<td>50.0</td>
</tr>
<tr>
<td>No</td>
<td>1.6</td>
<td>6.5</td>
<td>7.4</td>
</tr>
</tbody>
</table>

3.3. Objective assessment of the prosodic reading tutor

In many Japanese classes, public speaking is introduced in their syllabus. Here, when learners want to speak in the standard Japanese, it is often true that they always ask teachers to locate accent nuclei in their manuscript. In objective assessment here, we give learners a task of accent nucleus location in several Japanese paragraphs using the prosodic reading tutor and two other facilities available currently. The two facilities are

1) a PC-based word accent dictionary [14] and
2) a PC-based

vers are very sensitive to the accent nucleus when it is found at the first mora of an accent phrase. So, our simplification rules remove the accent nuclei other than the first accent nucleus in a phrase and the accent nuclei found at the first mora of an accent phrase which is longer than three morae. After removal, the H/L sequences of the multiple accent phrases are concatenated to generate the H/L sequence for the entire phrase. Using the resulting H/L sequence, our simplified pitch pattern is generated. An example is shown at the bottom of Fig. 4.

It should be noted that the first two systems are effectively error-free but the last one sometimes show incorrect pitch patterns due to on-line analysis errors. They can sometimes become serious because learners may not be able to judge whether the presented information is correct or not. Considering this, we carried out only subjective assessment for the first two systems and both subjective and objective assessment for the last one.

3.3. Objective assessment of the prosodic reading tutor

In many Japanese classes, public speaking is introduced in their syllabus. Here, when learners want to speak in the standard Japanese, it is often true that they always ask teachers to locate accent nuclei in their manuscript. In objective assessment here, we give learners a task of accent nucleus location in several Japanese paragraphs using the prosodic reading tutor and two other facilities available currently. The two facilities are

1) a PC-based word accent dictionary [14] and
2) a PC-based

vers are very sensitive to the accent nucleus when it is found at the first mora of an accent phrase. So, our simplification rules remove the accent nuclei other than the first accent nucleus in a phrase and the accent nuclei found at the first mora of an accent phrase which is longer than three morae. After removal, the H/L sequences of the multiple accent phrases are concatenated to generate the H/L sequence for the entire phrase. Using the resulting H/L sequence, our simplified pitch pattern is generated. An example is shown at the bottom of Fig. 4.

It should be noted that the first two systems are effectively error-free but the last one sometimes show incorrect pitch patterns due to on-line analysis errors. They can sometimes become serious because learners may not be able to judge whether the presented information is correct or not. Considering this, we carried out only subjective assessment for the first two systems and both subjective and objective assessment for the last one.
commercial Japanese speech synthesizer [15]. Since the accent dictionary is widely used in Japanese education, we compared the following three conditions: a) only with the word accent dictionary, b) with the dictionary and the synthesizer, and c) with the dictionary and our prosodic reading tutor.

The word accent dictionary only shows the accent pattern of an isolatedly pronounced word. So, its usefulness in this task is expected to be low. The speech synthesizer can present the pitch pattern of any input sentence as auditory stimulus. The difference between b) and c) lies basically in the mode of presentation, auditory or visual. The synthesizer sometimes present incorrect pitch patterns, similarly to the tutor. The objective assessment test was done after explaining the limitation of each facility. The dictionary contains only the word accent of isolatedly pronounced words and both the synthesizer and the tutor sometimes present incorrect pitch patterns.

Four paragraphs, p0 to p3, were prepared, which were judged by four Japanese teachers to belong to the same reading difficulty level. Manual phrase segmentation was done for each paragraph by the four teachers and phrase boundaries were explicitly shown to the subjects as punctuation mark or phrase boundary mark in the paragraph. The numbers of phrases are 73, 68, 73, and 70 for p0 to p3, respectively. The actual task given to the subjects is locating the first accent nucleus in each phrase. Fig. 5 show an example of the paragraph used and an example of the PC desktop image in the experiment.

The subjects were 36 learners of Japanese who had fundamental knowledge of Japanese word accent. p0 was presented to all the subjects without any facility to know their original performance. The number of facilities is three and we have other three paragraphs. Considering the ordering effect, we can prepare 36 different combinations of the paragraphs and the facilities. The 36 subjects were used to cover all the combinations.

Results of location were compared to the correct positions prepared by the four teachers. The original performance of the subjects was 68.2%. The same task of p0 was given to ten university students who are native speakers of Tokyo dialect. Their performance was 61.6%, lower than that of the subjects. As described in Sect. 1, this result is reasonable. Native Japanese speak the standard Japanese very fluently but they are not good at locating accent nuclei consciously. The first languages of 27 subjects out of 36 were tonal languages. The performance of reading tutor and the synthesizer is 93.2% and 95.9%, respectively, which is much higher than that of native speakers.

Results of accent nucleus location using p1 to p3 are shown in Fig. 6. In the experiment, all the mouse clicks were monitored and recorded in history files. Using the files, the speed of location and the precision of location can be compared among the three kinds of facilities of a) to c). In Fig. 6, the x-axis indicates the duration of elapsed time and the y-axis means the numbers of effective mouse clicks (answers) in the top and the rates of correct answers in the bottom. The top figure shows the speed of location and the bottom figure shows the precision of location by a function of elapsed time. No significant difference is found among the three facilities in the top figure, indicating that the tutor was unexpectedly ineffective to reduce the time required for accent nucleus location. This is because of the prior knowledge on incomplete performance of the tutor and it seemed that the subjects used the tutor very carefully. On the other hand in the bottom figure, the tutor is found to be significantly effective to increase the precision of accent location. It is also found that the synthesizer is also ineffective in this figure.

It is interesting that the performance in c) (84.8%) is lower than the original performance of the tutor for p1 to p3 (91.0%) and that of the synthesizer (91.3%). We can say that the subjects’ judgments always revise the tutors’ suggestions for the worse. As implemented in Sect. 2.2, availability of the system responses should be given to learners as useful information.

After the experiments, we asked the subjects how useful each facility was. 37.5%, 30.0%, and 82.5% of them said that a), b), and c) were “very useful”, respectively.

4. Conclusions

In this paper, we developed the very first online and free framework for teaching and learning Japanese prosody including word accent and phrase intonation. Both subjective and objective assessment experiments showed very high pedagogical effectiveness of the proposed framework.

This framework, called OJAD, was released to the public in August 2012 in an international conference of Japanese education [16]. After that, by using Google Analytics, all the accesses to OJAD have been recorded in a history file. The file shows that the number of accesses is around 16,000 as of March 2013 and about half of them are from outside Japan. Considering a fact that 72% of teachers of Japanese are non-native outside Japan [17], we can say that not a small number of learners are using OJAD as the only information source to know how to control word accent when trying to speak the standard Japanese.
5. References


