Insights into Deep Neural Networks for Speaker Recognition

Daniel Garcia-Romero and Alan McCree

Human Language Technology Center of Excellence
The Johns Hopkins University, Baltimore, MD 21218, USA
dgromero@jhu.edu, alan.mccree@jhu.edu

Abstract

Traditional i-vector speaker recognition systems use a Gaussian mixture model (GMM) to collect sufficient statistics. Recently, replacing this GMM with a deep neural network (DNN) has shown promising results. In this paper, we study a number of open issues that relate to performance, computational complexity, and applicability of DNNs as part of the full speaker recognition pipeline. The experimental validation is performed on the female part of the SRE12 telephone condition 2, where our DNN-based system produces the best published results. The insights gained by our study indicate that, for the purpose of speaker recognition, not using MLLR speaker adaptation and early stopping of the DNN training allow significant computational reduction without sacrificing performance. Also, using a full covariance universal background model (UBM) and a large set of senones produces important performance gains. Finally, the DNN-based approach does not exhibit a strong language dependence as a DNN trained on Spanish data outperforms the conventional GMM-based system on our English task.

Index Terms: speaker recognition, i-vectors, deep neural networks

1. Introduction

Current speaker recognition systems model i-vectors [1] with variants of Probabilistic Linear Discriminant Analysis (PLDA) [2, 3, 4, 5, 6, 7]. Given a large collection of labeled data (speaker labels), PLDA provides a powerful data-driven mechanism to separate speaker information from other sources of undesired variability.

The traditional i-vector framework [1] uses a GMM to collect sufficient statistics (stats). The work in [8] has shown that replacing this GMM with a DNN to compute stats produces significant improvements in an in-domain setup. More recently, the work in [9] has shown that these gains can also be obtained in an unsupervised domain adaptation setup. The role of the DNN is to effectively leverage transcribed data and to produce soft classifications (in terms of posterior probabilities) of speech frames into sub-phonetic categories (senones). The alignment of speech frames to sub-phonetic categories facilitates the comparison of speakers when they are producing the same content. In the same spirit, the earlier work in [10] proposed the use of a phonetically-aware UBM obtained from an automatic speech recognition (ASR) system. However, the performance improvements obtained by the recent DNN approach are much larger. Also, the same concept of stats computation with DNNs was explored by [11] and found less promising. The results in this paper are more in line with the optimistic findings in [8].

Unlike in the ASR community, where for the past five years DNNs have disrupted the field and received much attention, it was not until recently (2014) that DNNs have produced performance improvements for speaker recognition. Due to the different role that the DNNs play in the speaker recognition pipeline, it is necessary to gain more insights into their effective use as well as their applicability.

In this paper, we study a number of open issues that relate to performance, computational complexity, and applicability of DNNs as part of the full speaker recognition pipeline. In particular, we first evaluate the influence of having the best possible DNN (in terms of ASR accuracy) in our downstream speaker recognition performance. Specifically, we explore the importance of speaker adaptation, with feature-space maximum likelihood linear regression (fMLLR) [12], and amount of training iterations of the DNN. Also, we study how the granularity of the partition of the input space (determined by the number of senones) affects speaker recognition. Moreover, we evaluate the effects of using diagonal or full covariance Gaussians to model the acoustic features in each region of the partition. Finally, we study the language-dependence of the approach by comparing a matched-languge DNN with a mismatched one.

By improving our understanding of these issues, the final goal of the paper is to provide guidelines that result in efficient performance maximization. All our experimental validation is performed on the female part of the SRE12 telephone condition 2 where our DNN-based system produces the best published results on this task.

The remainder of the paper is organized as follows. Section 2 describes the system architecture and summarizes the role of the DNN. Section 3 describes our experimental setup, the procedure to train the DNNs, and the experimental analysis. Finally, section 4 provides the conclusions.

2. Speaker Recognition System

Figure 1 shows a block diagram of a state-of-the-art i-vector speaker recognition system. The first two blocks serve as a data-driven front-end that maps sequences of MFCCs into a low-dimensional vector denoted as i-vector [1]. The third block is a pre-processing stage that conditions the i-vectors so that they conform to the Gaussian modeling assumptions of the last
of speech from approximately 20K conversation sides including around 10K speakers using cellphone and landline phones. For some contrasting experiments we also trained DNNs using the Fisher Spanish (FS) and Switchboard-I (SWB) corpora. FS comprises 130h of speech from around 1500 conversation sides including 136 speakers using cellphone and landline phones. SWB comprises 300h of speech from around 4600 conversation sides including 543 speakers using only landline phones.

3.2. Speaker recognition system setup

3.2.1. GMM-based baseline

The baseline system in Figure 1 uses 40-dimensional MFCCs (20 base + deltas) with short-time mean and variance normalization. It is configured in a completely gender-independent way. It uses a 2048 mixture diagonal UBM with a 600 dimensional i-vector extractor, and a speaker subspace of 400 dimensions for PLDA. We report recognition performance in terms of equal error rate (EER) and/or normalized minimum detection cost function (DCF) [14] with probability of target trial set to either 10^{-5} or 10^{-3}, and the cost of misses and false alarms set to 1.

3.2.2. DNN-based systems

The only differences between the DNN and GMM-based configurations are due to the alternative ways to compute the frame posteriors. The posteriors of the DNN-based system are used to compute the stats and to define an ancillary UBM needed for the i-vector computation [8, 11]. The number of mixtures of this UBM is given by the number of senones (after removing senones from non-speech states). We use full covariance mixtures for our best performing system, but also show results in the case of diagonal covariances.

3.3. DNN training

All the DNNs in this work are trained using the Kaldi speech recognition toolkit. The labels (i.e. frame alignments to senones) for the DNNs are obtained from a standard tied-state triphone GMM-HMM system trained with maximum likelihood. The senone set is obtained by clustering the states using an alternative way to compute the frame posteriors. The posterior of the DNN-based system is used to compute the stats and to obtain the alignments (frame posteriors), the DNN-based approach uses ASR specific features to compute the stats and to obtain the alignments (frame posteriors), the DNN approaches. Notice that while the traditional GMM-based approach uses the same acoustic features (i.e. MFCCs designed for good speaker recognition performance) to compute the stats and to obtain the alignments (frame posteriors), the DNN-based approach uses ASR specific features to compute the alignments and then speaker features for the stats. Moreover, the DNN parameters Θ are trained using a transcribed training set. This extra piece of supervision is what allows the DNN to provide alignments that are phonetically-aware.

3.1. Datasets

3.1.1. Speaker recognition data

For our experiments we use the female part of the SRE12 telephone data (extended condition 2). This evaluation subset includes 1155 speaker models trained from 11,549 speech cuts (uneven number of cuts per model). There are 4524 target and 8,798,181 non-target trials. To train all the parameters indicated in Figure 1 we use 43,218 telephone call sides from 7692 speakers taken from Switchboard-II, Switchboard cellular, Fisher English part 1, and previous SRE collections.

3.1.2. DNN training data

Most of our analysis is based on DNNs trained on the Fisher English (FE) corpus (parts 1 and 2) which comprises 1200h
The role of the DNN is to provide a context in which to characterize how speakers differ from each other. Unlike in the GMM-UBM approach, the partition of the space accomplished by the DNN is optimized to discriminate between senones. Due to the complex nature of this phonetic space, these regions are not well modeled by simple Gaussians with diagonal covariance. To quantify this statement, we took the Fisher English DNN with 1500 iterations (row 3 of Table 1) and instead of a full covariance UBM we used a diagonal one. The performance of the diagonal UBM system at the three operating points is: \(\text{DCF}^{10^{-3}} = 0.246, \text{DCF}^{10^{-2}} = 0.145, \) and EER = 1.75%. Compared to the full covariance system, we can observe a noticeable reduction in performance (still much better than the baseline). Although the full covariance UBM has many more parameters than the diagonal one, the final complexity of the i-vector extraction process is not significantly increased (i.e. a similarity transformation of the first order stats that standardizes the covariances of the UBM facilitates efficient computation). Therefore, full covariance UBMs are recommended for deployment of DNN-based systems.

3.4.3. Diagonal vs full covariance UBM

<table>
<thead>
<tr>
<th>System</th>
<th>Iter.</th>
<th>(\text{DCF}^{10^{-3}})</th>
<th>(\text{DCF}^{10^{-2}})</th>
<th>EER(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM (2048)</td>
<td>-</td>
<td>0.362</td>
<td>0.195</td>
<td>1.82</td>
</tr>
<tr>
<td>Fisher English DNN</td>
<td>500</td>
<td>0.221</td>
<td>0.119</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>0.218</td>
<td>0.117</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>4500</td>
<td>0.220</td>
<td>0.117</td>
<td>1.27</td>
</tr>
<tr>
<td>+ fMLLR</td>
<td>1500</td>
<td>0.220</td>
<td>0.121</td>
<td>1.36</td>
</tr>
</tbody>
</table>

Table 1: Performance comparison of the baseline GMM system and the DNN-based systems. The influence of the number of DNN training iterations and the effect of fMLLR on the input features are presented.
3.4.4. Size of senone set

The number of regions in which the acoustic space is partitioned is given by the senone set (discarding non-speech senones). This set is obtained by clustering triphone states using a decision tree and its size has a strong repercussion in the total memory and computational cost of the final system. To characterize the relationship between number of senones and speaker recognition performance, we took the Fisher English DNN with 1500 iterations (row 3 of Table 1) and changed the number of target senones of the DNN. The bar plot in Figure 5 shows the results for the three operating points. We can see that the more senones the better the performance for the three metrics. It is quite remarkable that the performance does not saturate, for the large range considered, as we increase the partitioning of the acoustic space. This is a new behavior that differs from that of the unsupervised GMM-UBM approach (where performance saturates quite fast [8]). Therefore, it is the supervised nature of the DNN partitioning process (i.e., leveraging transcribed data) that enables a fine-grained partitioning that results in important performance gains. We plan to explore bigger sizes in the future to find out where the saturation point starts. However, these bigger systems might be too computationally expensive for practical purposes.

3.4.5. Language of DNN training data

Using transcribed data to train the DNN brings into question the amount of language dependence that might be introduced into the speaker recognition system. If performance gains are only attained by using a matched-language paradigm, the applicability of the technique is more limited. A first look into this issue was presented in [17] where Farsi and Arabic were studied using a convolutional neural network (CNN). Their results suggested little language dependence. Here we expand that work using a more mainstream dataset (conversational telephone calls) with a DNN and a different language pair (Spanish and English). Table 2 shows the performance of the system using a DNN trained on Fisher Spanish, along with the baseline and other DNN-based systems trained on English data (two from SWB and our best system from FE). The second column shows the amount of transcribed data used by the DNNs. Note that the types of channels and number of speakers also vary (see section 3.1.2), so the performance may also be affected by these factors. We can see that the Fisher Spanish system outperforms the baseline at both DCFs and gets a small degradation at EER. This behavior is similar to that of the SWB DNN-1 system, but slightly worse. Given the many factors of variation, we need to be cautious about making definitive statements. However, it seems safe to suggest that although there might be some language dependence, it is not too strong. Also, for the low false alarm region the Fisher Spanish system is as good as the SWB DNN-1. Nevertheless, a multilingual DNN systems could be a good approach to further reduce it, and it is part of our future work.

4. Conclusions

In this paper, we have conducted a large number of experiment to gain insights into the effective use of DNNs for speaker recognition. The results were presented on the female part of the SRE12 telephone data, where our top performing DNN provides the best published results on this task. The insights gained by our study indicate that not using fMLLR speaker adaptation and early stopping of the DNN training allow significant computational reduction without sacrificing performance. Also, using a full covariance universal background model (UBM) and a large set of senones is important for maximum performance. Finally, the DNN-based approach does not exhibit a strong language dependence as a DNN trained on Spanish data outperforms the conventional GMM-based system on our English task.

5. References

[5] J. Villalba and N. Brümer, “Towards fully Bayesian...
speaker recognition: Integrating out the between-speaker covariance,” in *Interspeech*, Florence, Italy, August 2011.

