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Abstract
This article is concerned with the issue of calibration in the
context of Deep Neural Network (DNN) based approaches to
speaker recognition. DNNs have provided a new standard in
technology when used in place of the traditional universal back-
ground model (UBM) for feature alignment, or to augment tra-
ditional features with those extracted from a bottleneck layer
of the DNN. These techniques provide extremely good perfor-
mance for constrained trial conditions that are well matched to
development conditions. However, when applied to unseen con-
ditions or a wide variety of conditions, some DNN-based tech-
niques offer poor calibration performance. Through analysis
on both PRISM and the recently released Speakers in the Wild
(SITW) corpora, we illustrate that bottleneck features hinder
calibration if used in the calculation of first-order Baum Welch
statistics during i-vector extraction. We propose a hybrid align-
ment framework, which stems from our previous work in DNN
senone alignment, that uses the bottleneck features only for the
alignment of features during statistics calculation. This frame-
work not only addresses the issue of calibration, but provides a
more computationally efficient system based on bottleneck fea-
tures with improved discriminative power.
Index Terms: speaker recognition, mismatch, calibration, deep
neural network, bottleneck features

1. Introduction
In recent years, deep neural networks (DNN) have been widely
applied to speech applications, including speaker recogni-
tion [1, 2, 3]. The first applications of “senone” DNNs to this
task that provided a large improvement over alternate technol-
ogy were in [1, 4]. DNNs were applied from the field of auto-
matic speech recognition to provide class posteriors for i-vector
extraction based on tied tri-phone states, or “senones,” instead
of component posteriors from a Universal Background Model
(UBM) that was trained to cluster acoustically similar sounds
in an unsupervised manner. This approach allowed direct com-
parison of the way in which two different speakers pronounce
the same phone, and resulted in a major advancement in speaker
recognition under telephony conditions. The same trend, how-
ever, was not observed on microphone or alternate channel con-
ditions [5], although methods to improve robustness to non-
telephone channels have been proposed [6]. More recently, bot-
tleneck (BN) features extracted from DNNs trained to predict
senones were shown to be very successful in the related field
of language recognition [7, 8, 9]. These BN features were then
applied to speaker recognition as a single feature and in com-
bination with MFCCs [6]. This latter BN+MFCC combination
was found to be one of the most robust DNN-based options for
speaker recognition when evaluated across a number of condi-
tions [6]. Studies to date have focused on the ability of DNN-

based speaker recognition to provide state-of-the-art improve-
ments in technology by observing their discrimination power in
relatively homogeneous conditions. However, the aspect of cal-
ibration and performance under varying trial conditions has, to
the best of our knowledge, not yet been investigated.

Calibration is a key aspect of any system and is typically
applied as a transformation to system scores with the aim of
producing proper (calibrated) log-likelihood ratios (LLR) [10].
A calibrated LLR represents the “strength of evidence” for the
hypothesis of a same-speaker trial vs. a different speaker trial.
Before applying calibration, parameters of a calibration model
must be learned using a development set of same and different-
speaker trial scores. One major difficulty with calibration is
that the development set should consist of scores that are rep-
resentative of the end use case; this requirement is not always
attainable due to data scarcity. Further, when more than one
condition is encountered by the system (such as telephone or
microphone test samples), a single calibration model learned
from the pooled-condition trial scores is not always a suitable
solution [11]. For a verification system where a decision thresh-
old will be applied, properly calibrated scores will allow appli-
cation of a single threshold which should be optimal across all
the trials. However, with mixed conditions, this calibration is
difficult to obtain. In order to achieve this, a system should
produce score distributions that are not sensitive to changes in
channel or acoustic conditions.

In this work, we provide a study of calibration performance
for the current DNN-based systems against the MFCC i-vector
system. We demonstrate that of the DNN-based systems, the
BN+MFCC system exhibits considerable condition dependence
in score distributions. The use of BN features in the calcula-
tion of the first-order statistics was identified as the cause of
this dependence, a finding which led to our proposal of a new
hybrid alignment framework. One instance of this framework
uses the BN features exclusively to produce alignments for the
speaker identification (SID) features in the calculation of first-
order statistics or accumulators for i-vector extraction, much
like our DNN/i-vector approach [1]. When evaluated on both
PRISM and the recently released Speakers in the Wild (SITW)
databases, this framework is shown to provide considerably bet-
ter calibration and discrimination performance as compared to
the BN+MFCC system architecture.

2. Background

This section provides the technical background of the DNN
approaches considered in this work. Additionally, we give an
overview of linear calibration for speaker recognition.
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2.1. DNNs in Speaker Recognition

The successful application of senone DNNs to speaker recog-
nition has focused on the i-vector framework [1, 2, 3]. Specifi-
cally, the DNN has been used in one of two ways: to extract bot-
tleneck features (BN) as input into the traditional UBM-based
i-vector framework [7, 11], or in a DNN/i-vector approach in
which the posteriors of the output layer of the DNN are used
to align an alternate set of features — hereafter referred to as
SID features — in the calculation of the first-order Baum-Welch
statistics [1].

The traditional i-vector framework, as it was proposed
in [12], used a single feature to extract both the alignments
and first order statistics. Specifically, a UBM was first trained
to cluster MFCCs into unsupervised clusters. Then, posteriors
for SID feature alignment were generated by simply decoding
the feature through the UBM. This architecture provided ma-
jor advancement on prior technology, namely joint factor anal-
ysis [13], and has since been widely adopted in the community.

Recently, the role of the UBM was replaced in the DNN/i-
vector paradigm to provide major improvements, particularly
in telephone-based speech [1]. In this paradigm, the DNN
was trained to predict senones (commonly used for auto-
matic speech recognition). The senone posteriors (with silence
senones removed) were then used to replace UBM component
posteriors when aligning SID features during statistics calcu-
lation. This provided a means of directly comparing the way
two speakers pronounce the same phone from the same rela-
tive point (a supervised senone) of the analogous UBM, instead
of from a cluster learned through unsupervised clustering of
acoustic sounds.

More recent was the application of BN features extracted
from a DNN to the task of SID [14]. This application was mo-
tivated by the significant benefit derived from these features in
the field of language recognition [7]. Bottleneck features can
be considered a phonetic representation from the DNN that is
extracted as a set of linear activations from a hidden layer with
a relatively small number of nodes compared to alternate layers
(80 compared to 1200 in this work). These features, when con-
catenated with traditional MFCCs, can be used in the traditional
i-vector paradigm. These BN+MFCC features have been shown
to provide performance that is competitive with the DNN/i-
vector approach, with the advantage of offering flexibility in the
UBM/i-vector design. This flexibility can, subsequently, trans-
late to a computational advantage. One disadvantage is the large
feature dimension (80D + 60D) and the phonetic-dependence of
the i-vectors [15], since the content of the BN features are used
in the calculation of the first-order statistics. In this work, we fo-
cus on the differences between these approaches in terms of cal-
ibration performance as compared with the traditional MFCC
i-vector framework.

2.2. Calibration of Speaker Recognition Systems

Transforming scores to likelihood ratios via calibration removes
the arbitrary nature of system scores and allows information
for a trial to be contained in a single number [10, 11]. The
LLR indicates the support for a same-speaker hypothesis versus
a different-speaker hypothesis. Linear logistic calibration is a
simple transformation of a score, s, as scal = sα+ β. The cal-
ibration parameters α and β are typically learned from a devel-
opment calibration set of trials which are representative of the
conditions for which the system is intended to operate by maxi-
mizing the likelihood under the assumption that posterior prob-
abilities are given by a logistic function of the scores. When

Figure 1: Extraction of features from audio, including bottle-
neck features and their concatenation with MFCCs and how
they can be used as SID features, and to calculate posteriors
via a UBM for the purpose of statistics generation. The alter-
native DNN/i-vector framework relies on senone posteriors for
this alignment process.

accurate representation is not guaranteed, either through subtle
changes in acoustic environment or considerable mismatch in
terms of channel, system calibration is similarly not guaranteed.
In order to use this simple calibration model in a manner that
can withstand any degree of mismatch, the score distributions
output from the system would ideally exhibit limited sensitiv-
ity to the trial conditions. As we will show later in this work,
this sensitivity can have quite a dramatic effect on SID perfor-
mance when evaluating a system on mixed conditions with a
single threshold. In reducing condition sensitivity, a system can
be expected to act more predictably when more than one condi-
tion is encountered (such as telephone or microphone test sam-
ples) despite development conditions. Although methods such
as meta-based calibration and trial-based calibration aim to help
in this regard [11], we constrain the scope of this paper to deal-
ing with inherent calibration of a system such that a single and
simple “global” calibration becomes more applicable. To date,
DNN-based SID performance has been reported in the context
of constrained trial conditions. In the deployment of a system,
however, the conditions to which it is applied may vary from
those in which it was developed, or include a mix of trial condi-
tions. Accordingly, we focus the remainder of this paper on the
task of analyzing and reducing the sensitivity of system scores
to trial conditions in order to allow the linear calibration model
to operate as intended.

3. The Hybrid Alignment Framework
The two DNN-based approaches to SID described in Section 2.1
can utilize the same DNN (as illustrated in Figure 1) for either
extraction of features or direct use in the process of aligning
features for statistics generation. In this work, we propose a
hybrid framework that uses both methods to specifically ana-
lyze the effect of BN features on the alignment process as com-
pared to their use in statistics for the extraction of i-vectors,
and the impact on SID performance1 The motivation for this
analysis comes from the inherent DNN objective to remove
speaker variation to improve speaker-independent senone pre-
diction. Though this speaker-independence is expected in the
BN features, they tend to provide benefit to SID [15]. As we
will show later in Section 5, their effect on calibration does not
always correlate with their perceived performance benefit. Care
should be taken when BN features are employed in a system.

The hybrid alignment framework relies on a UBM for fea-

1This work was under review when a similar framework was pub-
lished in [16]. The current study differs by focusing on the calibration
aspects of DNN-based speaker recognition.

1826



ture alignment but exploits different features for the purpose
of generating alignments as compared to those used in statis-
tics calculation. This is an extension of our previous use of
DNN senone posteriors γ for use in the calculation of statis-
tics for the SID features. Specifically, instead of using the
senone posteriors of a DNN trained in a supervised manner as in
the DNN/i-vector approach in [1], the posteriors are calculated
from a UBM trained using standard, unsupervised clustering.
This UBM is trained using what we refer to as an “alignment”
feature. The zero-order statistics for an audio file are given as
the sum over the UBM posteriors γ from the alignment fea-
tures extracted from the audio. These posteriors are then used
with the corresponding SID feature, to calculate the first-order
statistics. For i-vector extraction, these first-order statistics must
be centralized. For this purpose, the mean and covariance is
learned over a set of first-order and second-order statistics gen-
erated from the same data as used to train the UBM. One such
implementation following in Figure 1 would use MFCC fea-
tures as the SID features and the BN features to generate UBM
posteriors for alignment of the SID features.

There are a number of anticipated benefits from this hybrid
architecture. First, we are able to analyze the impact of DNN-
based options for feature alignment and compare it to their im-
pact of statistics generation for the task of SID. Secondly, in us-
ing different features for alignment compared to i-vector extrac-
tion, we can reduce computational requirements as compared
to the use of concatenated features. Finally, the DNN/i-vector
approach is constrained by the pre-defined number of senones
used in DNN training, whereas the unsupervised clustering of
bottleneck features allows for more flexibility in system design
as it is not constrained in the same way.

4. Evaluation Protocol
Experiments in this work are based on the PRISM [17] and
Speakers in the Wild (SITW) [18] corpora. Initial analysis ex-
periments are conducted on PRISM using a gender-independent
(GI) i-vector extractor [12] and GI classification via mixture-
of probabilistic linear discriminative analysis (PLDA) mod-
els [19]. Noise-aware speech activity detection (SAD) was
based on Gaussian mixture models (GMM) as previously used
in [20]. All i-vectors were processed with mean and length
normalization and LDA prior to PLDA [21]. In addition to
the noise- and reverb-degraded audio of PRISM, we included
transcoded audio files following the work in [22] for LDA and
PLDA training. The test set was split in two partitions, based
on speaker label, to provide both a calibration set and evaluation
set. Performance metrics were evaluated on the latter.

In Section 5.3, we apply the GI system trained on PRISM
data to the evaluation of the SITW dataset. This publicly
available dataset contains speech from open source media from
nearly 300 individuals. The audio poses significant challenges
in terms of variation in real world conditions including clean
interviews, red carpet interviews including babble, reverberant
stadium conditions, outdoor conditions, and spontaneous noise.
This variation results in severe cross-condition trials across a
range of speech durations and also includes cross-gender trials.
Readers are directed to [18] for more details on this database.
The development partition of the SITW database was used to
generate trial scores (2,597 target and 335,629 impostor trials)
from which calibration parameters were learned and applied to
the evaluation partition (3,658 target and 718,130 impostor tri-
als) from which metrics were reported accordingly.

Several different features are used in this work. MFCCs

Table 1: Condition-dependent and pooled-trial EER (%) / Cllr

on the PRISM dataset from three systems with different align-
ment and SID feature options. Subscript int and phn denote an
interview or phone call speaking style.

Condition MFCC BN+MFCC DNN/iv

tel-tel 2.81 / .111 1.20 / .070 1.23 / .054
tel-micint 1.25 / .084 0.81 / .072 0.76 / .060

micint-micphn 2.70 / .177 1.68 / .162 1.63 /.118
micint-micint 2.36 / .131 2.06 / .141 1.87 / .117

pooled 3.00 / .131 2.42 / .125 1.77 / .099

of 20 dimensions were contextualized with deltas and double
deltas. BN features were extracted from a 5-layer DNN consist-
ing of 1200 nodes in each hidden layer to predict 3494 senone
outputs, while the second-to-last hidden layer — the bottleneck
layer — was restrained to 80 dimensions. The input features
for the DNN consisted of 40 log Mel filter bank energies along
with the energies from seven frames either side of a frame for
a contextualized feature of 600 dimensions. The DNNs were
trained by using the same dataset as used in [6]. Similarly, the
input features were mean and variance normalized over the full
waveform to improve channel robustness. We use a single DNN
in this work for both extraction of BN and generation of senone
posteriors.

Two performance metrics are used in this work for both
PRISM and SITW. We report Equal Error Rate (EER) to mea-
sure the discriminative power of a system and we analyze how
well a system is calibrated across all operating points using a
log-likelihood ratio cost metric, Cllr [10].

5. Results
This section analyzes the effect of different DNN-based SID
approaches on calibration performance. Through analysis
of different hybrid alignment framework inputs, it also pro-
vides direction into how to reduce score distribution condition-
sensitivity and therefore increase the applicability of linear cal-
ibration.

5.1. Condition-dependent Analysis

First, we provide condition-dependent results on the PRISM
database for which the test set was divided into two equal par-
titions based on speaker ID in order to perform calibration, per
Section 4. Performance metrics are reported on a per-condition
basis, as well as on the set of scores formed by pooling all
trials. This pooled case is of particular interest for the EER
metric, since a single threshold must be applied irrespective of
condition, and a poor EER relative to the trial-weighted aver-
age over individual conditions is an indicator that score dis-
tributions may exhibit condition dependence. Three systems
were evaluated in this manner: the MFCC system, the feature-
concatenated BN+MFCC system, and the DNN/i-vector system
based on MFCCs (DNN/iv).

Firstly, we focus on the telephone-only (tel-tel) EER and
Cllr results reported in Table 1, where we can observe a gain
of 37–57% in performance metrics from systems that lever-
age BN features or the DNN directly for alignment over the
MFCC system. This finding for EER aligns with numerous
studies already conducted on telephone speech and DNN-based
SID [1, 15, 6]. For the alternate conditions of PRISM, the EER
of the BN+MFCC improves over MFCC between 13–38%.
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Table 2: Performance in terms of EER (%) / Cllr on the pooled
trials of the PRISM dataset using different alignment and SID
feature configurations in the hybrid alignment framework.

Alignment SID Feature
BN BN+MFCC MFCC

UBM-MFCC 4.43 / .184 3.40 / .151 3.00 / .131
UBM-BN 3.66 / .163 2.51 / .126 1.90 / .101

UBM-BN+MFCC 3.33 / .154 2.42 / .125 1.85 / .097
DNN senones 3.16 / .152 2.42 / .132 1.77 / .099

This gain is slightly greater for the DNN/iv system2, which may
be leveraging a larger supervector space (3494 senones vs 1024
UBM components). Of interest to this study is the way that cal-
ibration trends differ significantly between the two DNN-based
approaches. The BN+MFCC system is similar to the MFCC
system in terms of Cllr for all but the tel-tel condition, while
the DNN/iv system offers an 11–33% calibration improvement.
This calibration benefit is strongly conveyed in the results of
the “pooled” trials. Here, we can observe a 19% and 5% im-
provement in EER and Cllr (respectively) from BN+MFCC
over MFCC; in contrast, the DNN/iv system held corresponding
improvements of 41% and 24%.

When comparing systems, we can observe that the differ-
ence between the pooled trial EER and the average condition
EER for the BN+MFCC system is considerably greater than the
MFCC or DNN/iv system. This indicates that the score distri-
butions from each trial condition in the BN+MFCC system are
sufficiently different to prevent a single threshold from provid-
ing adequate classification in this system.

5.2. Alignment Features vs SID Features

Results in the previous section indicated a condition sensitiv-
ity in the BN+MFCC system. This sensitivity was not appar-
ent in the MFCC or DNN/iv framework. This finding brings
into question the role of each feature for the task of feature
alignment versus that of first-order statistics used for i-vector
extraction (i.e., the SID feature). To shed some light on the root
cause of this issue, we ran systems using four different meth-
ods of feature alignment and three different SID feature con-
figurations based on the hybrid alignment framework proposed
in Section 3. Table 2 provides these comparisons in terms of
EER and Cllr . Considering first the four methods of align-
ment generation, the use of DNN-based techniques for align-
ment is clearly an essential part of state-of-the-art technology,
with MFCC-based alignments consistently providing a signifi-
cant loss in performance irrespective of the choice of SID fea-
ture. When MFCCs are introduced alongside the BN features
(BN+MFCC) for alignment, performance tends to improve. In
contrast to the alignment feature, MFCC alone as the SID fea-
ture is optimal, and any inclusion of BN features in the first-
order statistics reduces calibration and discrimination perfor-
mance in pooled trials. Given these findings, we can conclude
that the hybrid alignment framework provides a means to lever-
age the benefits of bottleneck features for alignment while pro-
viding comparable calibration and discriminative performance
across pooled trail conditions to that offered by the DNN/iv
framework.

2This finding differs from our previous publication [6] in which the
DNN/iv implementation using MVN features incorrectly applied MVN
based on the whole waveform, instead of just speech frames.

Table 3: Performance in terms of EER (%) / Cllr on the pooled
trials of the SITW dataset using different alignment and SID
feature configurations in the hybrid alignment framework.

Alignment SID Feature
BN BN+MFCC MFCC

UBM-MFCC 13.81 / .435 12.22 / .392 12.30 / .414
UBM-BN 13.01 / .414 10.94 / .355 10.19 / .348

UBM-BN+MFCC 12.90 / .404 10.72 / .350 9.46 / .312
DNN senones 11.65 / .378 10.55 / .337 9.26 / .321

5.3. Speakers in the Wild (SITW) Results

Results so far have been constrained to the PRISM dataset in
which discrete trial conditions were analyzed individually as
well as after pooling trials. The SITW database provides an
interesting scenario in which “wild” audio from open-source
media is the focus. Consequently, the concept of discrete cat-
egories does not exist, but rather a range of audio-degrading
artifacts at different levels. The recognition of the same speaker
across such varying conditions will require that limited condi-
tion sensitivity is exhibited from the speaker recognition system
applied to the task. For this task, we apply the calibration mod-
els learned from the development set of SITW to the scores of
the SITW evaluation data.

Table 3 presents the results of the pooled SITW met-
rics. As with the observed trends on the PRISM database,
the DNN-based alignment techniques improve the performance
over MFCC-based alignment irrespective of the choice of the
SID features. Further, the addition of MFCCs to BN features
for alignment improve performance over BN features. Consis-
tently, we can observe that the MFCC alone as the SID fea-
ture is the best choice for both PRISM and SITW. On the chal-
lenging SITW corpus, the hybrid alignment framework using
BN+MFCC for alignment and MFCCs as the SID feature pro-
vides comparable performance to the DNN/i-vector approach.
This amounts to over a 22% relative improvement in both met-
rics on the SITW corpus over a MFCC-only system, and up to a
12% gain over the traditional BN+MFCC i-vector architecture.

6. Conclusions
This article focused on the issue of calibration in current DNN-
based speaker recognition algorithms and proposed a new hy-
brid alignment framework to address these issues. Using both
PRISM and SITW databases, we demonstrated that DNN-based
SID systems provide very good speaker discrimination power,
when analyzed on a per-condition basis. However, the applica-
tion of these systems to varying or unseen conditions poses a
considerable issue with respect to calibrating at a given oper-
ating point. Through analysis of the bottleneck features in use
for feature alignment and/or first-order statistics during i-vector
extraction, we demonstrated that using BN features for statis-
tics calculation stifles calibration by introducing condition sen-
sitivity in the system score distributions. The proposed hybrid
alignment framework uses BN features to generate alignments
and applies these to non-BN features for first-order statistics
calculation. This approach provided considerably more robust
scores, with a 22% and 12% relative gain in calibration per-
formance on PRISM and SITW, respectively, over the previous
BN+MFCC i-vector architecture, and a computational advan-
tage over prior DNN-based SID systems.
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