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Abstract
Human communication is a dynamical and interactive process
that naturally induces an active flow of interpersonal coordina-
tion, and synchrony, along various behavioral dimensions. As-
sessing and characterizing the temporal dynamics of synchrony
during an interaction is essential for fully understanding the hu-
man communication mechanisms. In this work, we focus on
uncovering the temporal variability patterns of synchrony in vi-
sual gesture and vocal behavior in affectively rich interactions.
We propose a statistical scheme to robustly quantify the turn-
wise interpersonal synchrony. The analysis of the synchrony
dynamics measure relies heavily on functional data analysis
techniques. Our analysis results reveal that: 1) the dynami-
cal patterns of interpersonal synchrony differ depending on the
global emotions of an interaction dyad; 2) there generally exists
a tight dynamical emotion-synchrony coupling over the inter-
action. These observations corroborate that interpersonal be-
havioral synchrony is a critical manifestation of the underlying
affective processes, shedding light toward improved affective
interaction modeling and automatic emotion recognition.
Index Terms: interactional/dyadic synchrony, synchrony dy-
namics, acoustic/gesture synchrony, affective interactions

1. Introduction
Human communication is a dynamical and interactive process
that is established on a common ground of achieving the inter-
action goals and sharing mutual interests of the interaction par-
ticipants. Such an interactive process naturally requires inter-
personal coordination. Notably this often invokes interactional
synchrony or behavior adaptation, along various behavioral di-
mensions of spoken words, speech prosody, body gestures and
emotional states [1]. The mutual dyadic behavioral influence
controls the dynamical flow of a conversation and character-
izes the overall interaction patterns. Automatically tracking the
interpersonal synchrony over an interaction and thoroughly un-
derstanding its temporal dynamics can bring insights into the
study of rich human communication mechanisms and the de-
sign of human-machine interfaces.

The phenomenon of interpersonal synchrony in human
communication has been well-established qualitatively in the
behavioral science and psychology research. An extensive liter-
ature in these domains has focused on manually observing and
assessing such mutual influence. For example, in the research
on interpersonal relations, behavior synchrony in a couple’s in-
teraction has been shown to offer predictive markers of the cou-
ple’s mental distress and well-being conditions [2] [3]. Moti-
vated by such findings, engineering researchers have developed
computational approaches to automatically quantify behavioral
coordination, and synchrony, for comprehensively character-
izing human interaction dynamics, and the underlying mental
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states. Lee et al. proposed a PCA-based scheme to quantify
turn-wise vocal synchronization and investigated the relation-
ship between the quantified measure and the underlying affec-
tive processes in married couples’ interactions. A higher degree
of vocal synchrony was found for couples with positive emo-
tions [4]. The analysis in our previous work [5] has also empir-
ically demonstrated that the interpersonal coordination patterns
of body language depends on the stances assumed.

These existing works however concentrate on the gross de-
gree of behavior coordination over an entire interaction. Little
attention thus far has been paid to study the temporal dynamics
of interactional synchrony along various behavioral modalities.
Human communication results from a complex interplay of the
dynamical processes of expressive behaviors, which naturally
leads to the dynamical nature of interactional synchrony. Be-
sides assessing the overall coordination strength, characterizing
the corresponding temporal variability is essential for compre-
hensively understanding and computationally modeling the dy-
namical flow of human communication [6].

This work aims at uncovering the temporal dynamics of
dyadic synchrony w.r.t. gesture and vocal behavior in affec-
tive interactions. Our goal is two-fold: 1) to investigate how
the dynamical patterns of interactional synchrony depend on
the global affective states of a conversational dyad; 2) to ex-
amine how the interpersonal synchrony and a dyad’s emotions
are dynamically correlated turn by turn over a conversation.
To this end, we propose a statistical scheme to automatically
quantify turn-wise behavior synchrony. Compared to the pre-
viously developed synchrony measures [4] [7], our metric has
the advantages of robustness to individual idiosyncrasies and
generalizability to diverse behavior aspects. The analysis of
the quantified dynamic synchrony measure relies heavily on the
functional data analysis (FDA) techniques that provide a use-
ful mathematical framework for exploring the temporal patterns
of time series data. We first apply functional PCA (FPCA) to
characterize the temporal variability of dyadic synchrony over
an interaction. We find that the temporal synchrony patterns
vary depending on the global emotional states of an interaction
dyad. We further employ functional canonical correlation anal-
ysis (FCCA) to uncover the dynamical association between the
behavior synchrony and a dyad’s emotions over time. Our anal-
ysis results reveal that there generally exists a tight dynamical
emotion-synchrony coupling over an interaction. These obser-
vations shed light upon the complex nature of affective commu-
nication and design of improved emotion recognition.

2. Data Description
We use the USC CreativeIT database for the analysis of syn-
chrony dynamics [8]. It is a freely-available multimodal
database of dyadic theatrical improvisations. Interactions are
goal-driven, which can elicit natural realization of emotions and
expressive multimodal behavior. There are 50 interactions in to-
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tal performed by 16 actors (9 female). Each interaction has an
average length of 3.5 minutes. The audio data of each actor was
collected through close-talking microphones at 48 kHZ. A Vi-
con motion capture system with 12 cameras captured detailed
full body Motion Capture data at 60 fps, i.e., the (x, y, z) po-
sitions of 45 markers on each actor, as shown in Figure 1(a).

Figure 1: (a) The positions of Motion Capture markers; (b) Eu-
ler angles of hand and head joints.

2.1. Gesture and Vocal Acoustic Features

This work considers hand and head gestures which are the most
expressive motions in human communication [9]. To extract
gesture features, we manually mapped the markers positions
(x, y, z) to the joint angles using MotionBuilder [10]. The joint
angles are popular for motion animation [11] [12] and gesture
dynamics modeling [9] [13]. Figure 1(b) illustrates the Euler
angles (θ, φ, ψ) of hand (arm and forearm) and head joints in x,
y, z directions. The angles of hand and head joints are used as
gesture features.

In addition, we represent the vocal behavior by extract-
ing acoustic features of pitch, the rms energy and 12 Mel Fre-
quency Cepstral Coefficients. These features were extracted ev-
ery 16.67 ms with a 30 ms analysis window to match with the
MoCap frame rate. The pitch features were smoothed and in-
terpolated over the unvoiced regions. We further augmented
both gesture and acoustic features with their 1st derivatives.
These extracted features have been shown to be emotion-related
and are popular in the affective computing community [5] [14].
All the features were z-score normalized in a subject-dependent
way. This work analyzes the gesture and vocal synchrony in a
dyad over an interaction using the extracted representations.

2.2. Emotion Annotation

We collected two types of emotion annotations in the database:
the time-continuous emotional flow and the global emotional
content of an actor in an interaction

2.2.1. Continuous emotion annotation

The time-continuous emotional state of each interlocutor was
annotated in terms of the dimensional attributes of activation
(excited vs. calm) and valence (positive vs. negative). Anno-
tators used Feeltrace [15] to continuously indicate the attribute
value from −1 to 1 while watching the video [16]. Our work
focuses on studying the turn-wise synchrony. Hence, we parti-
tion each actor recording into dialog turns according to speech
regions. Each turn of a leading interlocutor is paired with the
following turn of the partner, resulting in 1296 turn pairs, as il-
lustrated in Figure 2. The activation/valence value in each turn
is calculated by averaging the ratings across frames and anno-
tators, and is mapped into low [−1, 0] and high (0, 1] classes.
We further define the categorical emotion of a turn pair as low
(high) activation/valence if both turns are in the low (high) class.
We also define the continuous emotion value of a turn pair by
averaging the activation/valence values of both turns.

Figure 2: Illustration of setting up dialog turn pairs. Dyadic
synchrony is computed for each pair of dialog turns.

2.2.2. Global emotion annotation

The overall perception of activation and valence for each ac-
tor in a recording was rated on a 5-point scale by annotators
[16]. The global rating values of activation and valence of each
actor in an interaction are calculated by averaging the ratings
across annotators, and are mapped into low [1, 3] and high (3, 5]
classes. The global emotion category of a dyad is defined as low
(high) activation/valence if both subjects are in the low (high)
class (The cases with both low and high classes will be incor-
porated in the future analysis).

3. Quantification of Dyadic Synchrony
The goal of this work is to analyze the dynamical changes of
behavior synchrony over an interaction. The foremost precon-
dition is to robustly quantify the turn-wise synchrony measure
that is generalizable to various behavior aspects. We propose
a statistical scheme for this purpose, where the main idea is to
represent the behavioral characteristics of an individual at each
turn using the subject-independent behavior distribution.

Let X = {x1,x2, · · · ,xT } be a dialog turn of an in-
terlocutor, where T is the frame number and xt ∈ Rd is a
gesture or acoustic feature vector (see Section 2.1) at frame
t. We first build a subject-independent model of behavior fea-
tures based on GMMs to unify information from different sub-
jects. GMMs have shown great success for robust representa-
tion modeling in diverse domains [9] [17] [18]. Specifically,
the subject-independent model is constructed using the feature
vectors in the dialog turns of all the interlocutors: p(x|Θ) =∑K
k=1 πkN (x;µk,Σk), where K is the number of mixtures,

and {πk,µk,Σk} are the weight, mean vector and covariance
matrix of the k-th component. The parameters Θ can be esti-
mated based on the maximum likelihood criterion using Expec-
tation Maximization.

p(x|Θ) summarizes the subject-independent generation
process of the behavior feature vector x. Our intuition is that
incorporating such global generative information in the turn-
wise behavior description could bring robustness to the indi-
vidual idiosyncrasies. Motivated by the work in [5] which has
demonstrated that Fisher vector [19] is an effective way of em-
bedding a generative model in behavior description, we describe
the behavioral characteristics in the turn X using Fisher vector:
fx = 1

T

∑T
t=1∇Θ log p(xt|Θ). fx ∈ R2dK describes how the

parameters Θ contribute to the process of generating the local
behavior in the dialog turn X. It is a popular and efficient rep-
resentation of image, audio and video data [20] [21] [22]. In
addition to encoding the global statistical information, fx pro-
vides a unified and generalizable representation form for the
turn-taking structure of human conversations where the dialog
turns are of variable lengths over time and across interlocutors.

Given a pair of dialog turns (XA,XB), their behavior char-
acteristics are represented by (fxA , fxB ). We define the behav-
ior synchrony between the pair of turns based on the angle θAB
between fxA and fxB ,

σ = cos2θAB , cosθAB =
fTxA

fxB

|fxA | · |fxB |
. (1)
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The cosine similarity is suitable for measuring similarity be-
tween high dimensional feature vectors, and has been adopted in
the synchrony measure proposed in [4]. σ is bounded in [0, 1].
A greater σ value indicates a higher level of dyadic synchrony.

4. Analysis and Results
This section aims at investigating how the quantified synchrony
measure dynamically changes over time depending on the emo-
tional states of an interaction dyad.

4.1. Verification of The Synchrony Measure σ

The analysis in this section is to verify the validity of the pro-
posed measure in Equation (1) for characterizing behavior syn-
chrony in human communication. To this end, we compare the
computed synchrony measure in each turn pair of the actual in-
teractions with that in any random turn pair. Both turns in a ran-
dom pair are from different interactions. The assumption under
this comparison is that there exists natural mutual behavior in-
fluence in human communication. Hence the synchrony degree
in a matched turn pair is expected to be higher than that in a ran-
dom pair. We generate 5, 000 random turn pairs and compute
the turn-wise synchrony measure w.r.t. both gesture and vocal
acoustic features (see Section 2.1).

The t-test comparison reveals that the gesture synchrony
in the matched turn pairs (Avg. 0.364) is significantly higher
compared to the random pairs (Avg. 0.282) with p = 0.000;
and that a significantly greater degree of acoustic synchrony is
observed in the matched turn pairs (Avg. 0.561) than in the ran-
dom pairs (Avg. 0.488) with p = 0.000. The results support
that the proposed synchrony measure is able to appropriately
capture the inherent interpersonal behavior cohesiveness in hu-
man communication.

In addition, we compare the synchrony measures in distinct
turn-pair-wise emotion categories (see Section 2.2.1). As shown
in Table 1, both gesture and acoustic synchrony measures of
a low-activation turn pair are significantly higher compared to
a high-activation pair; a greater degree of behavior synchrony
is observed when both interlocutors are rated as high-valence
compared to the low-valence ones. This observation is consis-
tent with the well-established fact in the couple therapy studies
that couples with positive emotions are more behaviorally co-
herent in interactions than distressed couples [4] [23], which
reinforces the validity of the quantified measure for character-
izing the interpersonal mutual influence.

4.2. Synchrony Dynamics in Affective Interactions

Having established on the validity of the quantified synchrony
measure, we herein focus on uncovering the temporal dynamics
of the turn-level synchrony measure in affective interactions,
relying heavily on FDA techniques.

Table 1: Synchrony comparison: low-activation vs. high-
activation and low-valence vs. high-valence.

Synchrony Type Low-Activation High-Activation p-value
Gesture 0.407 0.357 0.0491

Acoustic 0.566 0.530 0.0173

Synchrony Type Low-Valence High-Valence p-value
Gesture 0.302 0.421 0.000

Acoustic 0.517 0.601 0.000
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Figure 3: The 1st eigenfunction ξ1(t) of gesture/acoustic syn-
chrony curves. std(δ1) is the standard deviation of the 1st PCA
score δ1 of the synchrony curves along ξ1(t).

4.2.1. Functional Data Construction in Interactions

Functional data analysis (FDA) techniques provide a mathemat-
ical framework for exploring the temporal variability of time
series data, and are hence useful for uncovering the temporal
structure of interactional synchrony. Let {yn}Nn=1 be a gen-
eral time series data. To employ FDA techniques on the data,
we first transform the time-discrete data into time-continuous
functional data, i.e., ỹ(t) =

∑K
k=1 ckφk(t), where {φk(t)}Kk=1

are the predefined basis functions. In this work, we choose B-
splines as the basis functions. The coefficients c are estimated
by minimizing the fitting error,

c = argmin
c

N∑
n=1

(yn − ỹ(tn))2 + µ

∫
[D2ỹ(t)]2. (2)

D2 denotes the 2nd derivative and defines the roughness of ỹ(t).
As illustrated in Figure 2, a dyadic interaction is character-

ized as a sequence of dialog turn pairs {(XA,n,XB,n)}Nn=1. In
each turn pair (XA,n,XB,n), we compute a synchrony measure
σn (see Equation (1)) that is associated with a turn-pair-wise
continuous value of activation/valence en (see Section 2.2.1),
resulting in two one-dimensional time series data, {σn}Nn=1 and
{en}Nn=1. According to Equation (2), {σn}Nn=1 and {en}Nn=1

can be respectively transformed into time-continuous functional
data σ̃(t) and ẽ(t) that are used in the analysis that follows.

4.2.2. Temporal Synchrony Dynamics in Relation to Global
Dyadic Emotions

We first investigate how the dynamical patterns of interactional
synchrony depend on the global emotions of a dyad. To char-
acterize the temporal variability of dyadic synchrony, we apply
FPCA to the functional synchrony data σ̃(t). FPCA finds the
principal variation modes, i.e., a set of orthonormal eigenfunc-
tions {ξj(t)}j , of the functional data [24]. ξj(t) is computed
such that the data variance along the direction is maximized:
ξj(t) = argmax var(

∫
(σ̃(t) − µ(t))ξj(t)dt), where µ(t) is

the mean curve. The set of eigenfunctions represent the princi-
pal components of temporal variation of the synchrony curves.
The projection of σ̃(t) along ξj(t) is defined as the PCA score,
i.e., δj =

∫
(σ̃(t) − µ(t))ξj(t)dt, summarizing the overall dy-

namics of the synchrony along the corresponding eigenfunction.
We apply FPCA respectively to the gesture and acoustic

synchrony curves from all the interactions. Figure 3 presents
the 1st eigenfunction ξ1(t) of the gesture/acoustic synchrony
curves, which describes the dominant synchrony variability. We
can observe distinct variation modes for gesture and acoustic
synchrony: the variability of acoustic synchrony is more tem-
porally stable in general, while the gesture synchrony involves
more drastic oscillations over time. Figure 4 presents the scat-
terplots of the 1st and 2nd PCA scores, i.e., δ1 and δ2, of ges-
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Figure 4: Scatterplots of 1st and 2nd PCA scores of ges-
ture/acoustic synchrony curves.

ture/acoustic synchrony curves, where each marker summarizes
the overall dynamical pattern of the synchrony in an interaction.
Different colors indicate distinct global turn-pair-wise emotion
classes (see Section 2.2.2). Discernible dynamical synchrony
patterns (esp. δ2) are generally observed across emotion cate-
gories. For example, δ2 of gesture synchrony in the low-valence
dyads tends to locate in the upper part of the plane while that
in the high-valence dyads generally lies in the lower part. We
conduct t-tests to compare the PCA score distributions between
emotion classes. Statistics indicate that the cross-emotion dif-
ference of synchrony dynamics is primarily expressed along the
2nd variation component — δ2 distributions are significantly
discriminative in the low and high activation/valence classes
(p < 0.05) and there is no significant cross-emotion difference
of δ1 distributions. The distinguishability of δ2 suggests that
the dyadic emotions affect the temporal synchrony variability
besides the overall synchrony strength and such emotion mod-
ulation is mainly reflected along the 2nd variation component.

4.2.3. Temporal Synchrony Dynamics in Relation to Continu-
ous Dyadic Emotions

The above analysis presents a holistic picture about the inter-
relation between the temporal synchrony variability and the
global dyadic emotions. Herein, we further study how such be-
havior synchrony and a dyad’s emotions are dynamically corre-
lated turn by turn over time.

FCCA is a useful tool for exploring the dynamical associ-
ation between a pair of functional data [25] [24] [26]. It has
also been applied to quantify the dynamical articulator-acoustic
coupling in speech production [27]. In this work, we have two
sets of functional data, synchrony curves {σ̃i(t)}i and emo-
tional curves {ẽi(t)}i. The objective of FCCA is to find a
pair of functions (η(t), ζ(t)) such that the canonical variates
(
∫
η(t)σ̃i(t),

∫
ζ(t)ẽi(t)) are maximally correlated,

max
(η(t),ζ(t))

cov(
∫
ησ̃i,

∫
ζẽi)

2

[var(
∫
ησ̃i) + λ

∫
D2η][var(

∫
ζẽi) + λ

∫
D2ζ]

. (3)

λ is a smoothing parameter. η(t) and ζ(t) are the smoothed
leading canonical weight functions, characterizing the temporal
co-varying behavior of dyadic synchrony and emotion. The cor-
relation between

∫
η(t)σ̃i(t) and

∫
ζ(t)ẽi(t) is the smoothed

leading canonical correlation r, measuring the strength of the
emotion-synchrony association.
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Figure 5: The smoothed leading canonical weight functions of
emotion and behavior synchrony.

We apply FCCA to every two sets of emotion and syn-
chrony data, e.g., activation and acoustic synchrony. The
smoothing parameter λ is selected in a cross-validation manner
as introduced in [26]. Figure 5 shows the dynamical behavior
of the smoothed leading emotion-synchrony weight functions.
As can be seen, each pair of emotion-synchrony weights vary
in a relatively similar manner over time, i.e., there is a emotion-
synchrony correlation at any particular time. For example, both
valence-gesture synchrony weights decrease at a similar rate at
any given time. This co-varying behavior of emotion-synchrony
weights suggests that there generally exists a tight dynamical
emotion-synchrony coupling over an interaction. Another inter-
esting observation is that the valence-synchrony weights have
an inphase relationship while the activation-synchrony weights
co-vary in an antiphase way. This observation is congruent
with the results in Table 1 that the low-activation dyads ex-
hibit a tighter synchrony than the high-activation ones while the
high-valence dyads show a stronger synchrony than the low-
valence ones. In addition to the co-varying behavior exhib-
ited in the emotion-synchrony weights, the smoothed shared
variance between ẽ(t) and σ̃(t) (i.e., the squared smoothed
canonical correlation r2), corroborates a strong degree of tem-
poral emotion-synchrony coupling: the valence-acoustic syn-
chrony r2 is .694; the valence-gesture synchrony r2 is .719;
the activation-acoustic synchrony r2 is .697; and the activation-
gesture synchrony r2 is .645. These results imply that interac-
tional synchrony is a prominent manifestation of the underlying
affective processes, shedding further light toward informing af-
fective interaction modeling and emotion recognition.

5. Conclusion
This work made an initial attempt at quantitatively investigat-
ing dynamic synchrony variability in gesture and vocal behav-
ior in affective interactions. Our analysis results revealed that
the interaction synchrony is a prominent manifestation of the
underlying affective processes, from both holistic and turn-wise
dynamic perspectives. The analysis brings us insight that can
be useful for developing intelligent human-machine interac-
tion, e.g., creating an interaction computer that can generate ap-
propriate behavior such that the human-machine behavior syn-
chrony is controlled by their affective states. Also, in the future,
we would like to incorporate synchrony dynamics into affect
modeling for improving automatic emotion recognition.
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