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Abstract

Deep neural acoustic models benefit from context-dependent
(CD) modeling of output symbols. We consider direct training
of CTC networks with CD outputs, and identify two issues. The
first one is frame-level normalization of probabilities in CTC,
which induces strong language modeling behavior that leads
to overfitting and interference with external language models.
The second one is poor generalization in the presence of nu-
merous lexical units like triphones or tri-chars. We mitigate the
former with utterance-level normalization of probabilities. The
latter typically requires reducing the CD symbol inventory with
state-tying decision trees, which have to be transferred from
classical GMM-HMM systems. We replace the trees with a
CD symbol embedding network, which saves parameters and
ensures generalization to unseen and undersampled CD symbols.
The embedding network is trained together with the rest of the
acoustic model and removes one of the last cases in which neural
systems have to be bootstrapped from GMM-HMM ones.
Index Terms: LSTM, CTC, context dependent phones, state
tying, decision trees

1. Introduction
Acoustic models built with end-to-end trained deep neural net-
works are general enough to read raw waveforms [1] and output
characters [2], bypassing steps of feature extraction and prepa-
ration of pronunciation lexicons. However, even with abundant
training data, the performance of end-to-end networks can be
improved by introducing elements from classical GMM-HMM
models, most notably the concept of context-dependent (CD)
output symbols. To limit the number of considered states, these
are clustered using state-tying decision trees [3, 4], often taken
from GMM-HMM models, making for better representations of
CD symbols which are rare or absent in the training data.

In this work we consider Connectionist Temporal Classifica-
tion (CTC) [5] networks with context dependency: for each
frame of acoustic features, the network predicts CD targets
(phonemes or characters in context). To the advantage of CTC
networks, the training procedure can be started on unaligned tran-
scripts and does not require bootstrapping from a GMM-HMM
system. To preserve these properties, we propose to compute
the representations of CD output symbols with an embedding
network, which is a neural analogue to a state-tying decision tree.
The embedding network naturally exploits similarities between
contexts, and generalizes to previously unseen ones.

We address the challenges posed by using CD symbols with
CTC. We show that using CD symbols improves over a vanilla
CTC solution, and that the best results are obtained with the
formulation of CTC loss more similar to the Lattice-Free MMI
methods. During training, it normalizes probabilities on the
transcript level rather than on the frame level.

2. Background
2.1. GMM-HMMs with Decision Trees

The classical GMM-HMM acoustic model assumes that each
speech segment (typically a 25ms long acoustic frame) is emitted
from a single Gaussian mixture specified by the hidden state of
the HMM [6, 7]. This simple emission model assumes simi-
larity of frames emitted from the same state, and dissimilarity
to the remaining frames. It is achieved by careful modeling of
acoustic phenomena. Each phoneme is partitioned into three
sub-phonemic states, and context-dependent changes in pronun-
ciation (e.g., voicing) are handled by differentiating between the
emissions of the same phoneme from different contexts.

Particularly popular are triphones, i.e., phonemes considered
in their left and right contexts. Larger units like quinphones are
possible as well. To cope with the large amount of possible
CD symbols the emission GMMs are shared between contexts,
with the mapping performed by state-tying decision trees [8].
Typically, such trees map each CD symbol to one of a few
thousand GMMs (also called tied states).

In a hybrid DNN-HMM model the Gaussian mixture rep-
resentation of speech frames is replaced with a deep neural
network that is tasked with predicting the HMM state aligned
with each frame. In principle, the network can become invariant
to many acoustic phenomena and it is no longer necessary to
model them explicitly. Indeed, little to no gains are reported for
dividing phonemes into subphonemic states [3]. However, ex-
plicit modeling of the context still improves recognition accuracy
[3, 4]. For this reason, a typical DNN-HMM system employs
neural networks that predict the tied states of a previously trained
GMM-HMM model. Consequently, the application of neural
networks still depends on decision trees that map CD symbols
to individual network outputs.

2.2. End-to-end approaches to speech recognition

End-to-end systems can be trained from scratch without a depen-
dency on a previously built GMM-HMM system. They employ
cost functions able to establish an alignment between the se-
quence of acoustic frame features and the elements of the target
transcript. This can be accomplished in two ways. First, a
sequence-level cost function can be applied to an HMM topol-
ogy. Examples of such models are CTC [5, 9], Lattice-Free
Maximum Mutual Information (LF-MMI) [10, 4] and Graph
Transformer Networks (GTN) [11, 12]. A second family of mod-
els replaces HMMs with a neural attention mechanism [13, 14].
In this contribution we focus on CTC due to its popularity and
wide adoption in recent ASR projects such as Baidu’s Deep-
Speech [2] or the Mozilla Speech to text engine1. To better
understand the interaction of the CTC loss with CD symbols, we
will describe CTC from the graph transformer point of view.

1https://github.com/mozilla/DeepSpeech
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(a) Decoding transducer

(b) Training graph for a single utterance “abba”

Figure 1: CTC transducers for a two-letter alphabet L = {a, b}

2.3. Locally and globally normalized CTC

Let Y be a desired transcript, i.e., a sequence of symbols over
an alphabet L. An extended transcript Ŷ of symbols from the
alphabet L̂ = L∪ {∅} is a longer sequence formed by repeating
elements of Y and padding them with a special blank (∅) token.
Consecutive elements of Ŷ correspond to input frames. Y can be
uniquely recovered from Ŷ by removing repetitions and blanks,
implemented by a function B(Ŷ ) = Y [5]. This operation can
also be implemented using a Finite State Transducer (FST) [15]
shown in Figure 1. Equivalently, all extended transcripts that
map to Ye can be captured with a regular expression

∅∗ a a∗ ∅∗ b b∗ ∅ ∅∗ b b∗ ∅∗ a a∗ ∅∗ ,
where the ∗ operator denotes zero or more repetitions.

The network reads a sequence of T acoustic frames and
computes a matrix O ∈ RT×|L̂| of unnormalized, non-negative
scores Ot,l for emitting symbol l from frame t. The unnormal-
ized score of an entire extended transcript Ŷ is defined as the
product of scores assigned to all its symbols

Ŝ(Ŷ ) =
∏
t

Ot,Ŷt
, (1)

often replaced by a sum of logarithms for numerical stability.

2.3.1. CTC-G: Globally normalized CTC

To compute the probability assigned to a transcript Y we nor-
malize the sum of scores of all extended transcripts that map to
Y by the sum of scores of all extended transcripts, as advocated
in GTN [11], LF-MMI [10], and Alphanet [16]:

P (Y |X) =

∑
Ŷ ∈B−1(Y ) Ŝ(Ŷ )∑

Ŷ ∈L̂T :Ŷ is valid Ŝ(Ŷ )
. (2)

Both the numerator and the denominator can be computed us-
ing the forward algorithm over graphs unrolled over utterance
frames: the utterance graph (Figure 1b) for the numerator and
the decoding graph (Figure 1a) for the denominator. The time
complexity depends on the number of states in the graph. For
CD systems it is dominated by the denominator computation.

2.3.2. CTC: Local normalization in CTC

CTC avoids denominator computation in (2) by using framewise
normalization of scores. Observe that for any Zt we have

P (Y |X) =

∑
Ŷ ∈B−1(Y ) Ŝ(Ŷ )∑

Ŷ ∈L̂T :Ŷ is valid Ŝ(Ŷ )

=

∑
Ŷ ∈B−1(Y )

∏
tOt,Ŷt

/Zt∑
Ŷ ∈L̂T :Ŷ is valid

∏
tOt,Ŷt

/Zt
.
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Figure 2: Bi-character CTC decoding transducer for a two-letter
alphabet L = {a, b}. It imposes overlap between subsequent
bi-characters.

Validity of an extended transcript refers to the correct overlap
of neighboring symbols, which is an issue if CD symbols are
used. With ordinary context independent (CI) symbols, every
extended transcript is valid. Taking Zt =

∑
y Ot,y we can

locally normalize network outputs into probabilities p(Ŷt =
y) = Ot,y/Zt. Furthermore, when all extended transcripts are
valid, which is the case when context-independent (CI) symbols
are used, the denominator

∑
Ŷ ∈L̂T

∏
t p(Ŷt = y) is always 1.0

and need not be computed recovering the familiar CTC formula

P (Y |X) =
∑

Ŷ ∈B−1(Y )

∏
t

p(Ŷt|X). (3)

2.4. CTC loss with context-dependent symbols

We illustrate the CTC criterion with CD symbols on an example.
Let [a, b, b, a] be the target transcript, which corresponds to the
sequence YE = [∅a, ab, bb, ba] of bi-characters with ∅a, aa,
and ba denoting CD-variants of a. The extended alphabet has 7
symbols (1 blank and 6 CD symbols). All extended transcripts
of YE match the expression

∅∗ ∅a ∅a∗ ∅∗ ab ab∗ ∅∗ bb bb∗ ∅∗ ba ba∗ ∅∗.
Please note that the blank symbol between repeated bs became

optional, because the two emissions of b have different contexts.
From the example we can see that CD symbols which form

an extended transcript overlap with the symbol at frame t, setting
the context for frame t+1. This means that strings over the alpha-
bet Ŷ with improper overlaps are invalid and must be removed
from the denominator sum in (2). This can be achieved with
the forward algorithm applied to a sparsely connected decoding
graph, e.g., the bi-character one in Figure 2.

However, the locally normalized CTC loss (3) implicitly
sums over all strings in Ŷ ∗, including the invalid ones whose
CD symbols do not overlap. This makes the network prone to
overfitting, because it must learn to properly overlap the symbols
that are predicted and thus remove all ambiguity from its outputs.
In practice this means that CTC predictions will become very
sharp, selecting for each frame only one CD-symbol with high
probability. The model is forced to start modeling the language in
order to be able to essentially output a single hypothesis. During
decoding, this internal language model conflicts the external one,
requiring the use of low acoustic model weights (cf. Figure 4).
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Under a different interpretation, local normalization forces
the network to differentiate between the same symbol in different
contexts, even though they may correspond to exactly the same
sound. Clustering CD-symbols using decision trees [3] helps by
grouping similarly sounding tied symbols. However, even with
tied symbols, there are many invalid extended transcripts which
the network will learn not to emit.

2.4.1. CTC-GB: context-dependent blanks in CTC-G

Globally normalized CTC allows to introduce multiple context-
dependent blank characters (CTC-GB). This brings the CTC
topology closer to a classical tri-state HMM, where blanks serve
as secondary subcharacter states. In our running example YE ,
all valid extended transcripts with CD blanks fit the pattern
∅∅∗ ∅a ∅a∗ a∅∗ ab ab∗ b∅∗ bb bb∗ b∅∗ ba ba∗ a∅∗,

where ∅∅, a∅, and b∅ are the CD blank symbols. We found that
the CD blanks are especially helpful when we tie the prototypes
used by the scoring layer in the network, as described next.

3. CD Embeddings for End-to-end Training
The last parametrized layer of a typical deep neural model is a
linear layer, also called an embedding or a look-up layer. It stores
a prototype vector per each of N output symbols and has O(N)
parameters. Because CD targets are strings of D symbols from
the alphabet L̂, the embedding layer naively requires O(|L̂|D)
parameters. This exponential growth with D can be alleviated
by fixing the number of tied states, and mapping each of |L̂D|
strings to a tied state in the scoring layer with a decision tree.

We propose an alternative way to handle large numbers of
output symbols: keep the full set of output symbols (which still
grows exponentially with the size of the context), but make their
prototypes co-dependent by generating them with an auxiliary
Context-Dependent Embedding (CDE) neural network, analo-
gous to a state-tying decision tree. CDE reduces the number
of parameters in the scoring layer, enables learning similarities
between contexts, and generalization to previously unseen ones.
Prototypes of n-gram CD symbols (in our case bi-chars and tri-
chars) are computed with n separate character embedding layers.
Those embeddings of individual characters are then concatenated
and passed through a ReLU MLP (Figure 3).

4. Model Description
We use the Wall Street Journal dataset, with the typical split into
Si284, Dev93, and Eval92 as train, dev and test sets, respectively.
We calculate 80-dim filterbank features along with the energy
in each frame, extend them with temporal ∆s and ∆-∆s, and
apply global cepstral mean and variance normalization (CMVN).
We pre-process the data using Kaldi [17], implement the neural

Figure 3: Architecture of the Context-Dependent Embedding
(CDE) network. Embeddings of individual characters are com-
bined to form a CD symbol embedding.
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Figure 4: Globally (CTC-G) versus locally normalized CTC with
CD symbols under external LM. CTC-G reaches lower WER with
higher acoustic weights than CTC, indicating that its outputs
are more ambiguous and conflict less with the LM. The range of
optimal acoustic weights is also broader for CTC-G.

network in PyTorch [18] and use Kaldi’s FST decoder.2

Our model has two convolutional layers with ReLU activa-
tions, dimensionality 32, kernel sizes 7 × 7, and strides 1 × 2
and 3×1, meaning that the first layer halves the resolution along
the frequency axis and the second layer reduces the length of the
utterance. We apply batch normalization [19] after each convo-
lution. The convolutions are followed by four BiLSTM layers
with 320 cells each. Therefore, scoring layer prototype vectors
are also 320 dimensional. The alphabet has |L̂| = 49 symbols,
which accounts for 2401 bi-characters, and over 117k possible
tri-characters. We limit the set of tri-characters from 117k to
less than 18k which appear in the training data and the language
model. We treat the leftmost and rightmost characters of a tri-
char as left and right contexts. The context-dependent scoring
network embeds each CI symbol into 160 dimensions for bi-
chars and 110 dimensions for tri-chars, then uses 2 ReLU layers
with 320 units and an affine projection into 320 dimensions.

Hyperparameters were adjusted on the baseline CTC context-
independent model. All models are trained with batches of 16
utterances using Adam optimizer [20] and learning rate 0.001,
which is halved every 5 epochs starting from the 32nd epoch. We
use Polyak averaging with decay 0.998 [21]. All parameters are
initialized using PyTorch defaults. We regularize with Gaussian
weight noise with peak standard deviation σ = 0.15 [22], which
increases linearly during initial 20k steps.

5. Experiments
We first confirm that locally normalized CTC with CD symbols
conflicts with external language models. Figure 4 relates Dev93
decoding accuracy with acoustic weight for global and local
normalizations. For a given symbol, locally normalized CTC
sharply differentiates between its contexts. This has to be miti-
gated during decoding with low acoustic model weights, which
is equivalent to increasing the temperature of its SoftMax output
classifier. Globally normalized CTC-G reaches a lower overall
WER with higher acoustic weights, indicating that it produces
more ambiguous hypotheses, which are resolved by the LM. We
observed a similar trend for other locally and globally normal-
ized models. In fact, for all CD models in Table 1 the optimal
acoustic weight was close to 0.4 for locally normalized ones and
to 1.0 for globally normalized ones.

2Our PyTorch implementation is freely available at github.com/
chorowski-lab/pytorch-asr
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Table 1: WER (%) of character-based models on WSJ, with ex-
ternal LMs for locally normalized CTC, globally normalized
CTC-G (e.q. (2)), CTC-GB with CD blanks. CDE denotes net-
works with the deep CD-symbol embedder. With the exception of
tri-char models, we average 3 independent training runs.

Bg LM Tg LM [9]
Model Dev93 Eval92 Dev93 Eval92

LF-MMI [4] 5.2∗

LF-MMI Bi-char [4] 4.1∗

Eesen [9] 7.3
Gram-CTC [23] 6.7
CTC/ASG [24] 9.5 6.6

CTC 12.1 8.7 9.3 6.6

CTC Bi-char 12.0 8.4 9.4 6.4
CTC Bi. CDE 11.9 8.4 9.3 6.4

CTC-G Bi-char 11.8 8.4 9.0 6.2
CTC-G Bi. CDE 11.6 8.7 9.0 6.5
CTC-GB Bi-char 11.8 8.5 9.2 6.5
CTC-GB Bi. CDE 11.5 8.5 8.8 6.2

CTC Tri-char 11.4 8.3 9.4 6.5
CTC Tri. CDE 11.3 8.2 8.9 6.4

∗ Uses additional data augmentation

We report in Table 1 error rates for CI and CD variants of
CTC using the standard bigram (Bg) and trigram (Tg) [9] lan-
guage models. Early stopping checkpoints and acoustic weights
for Eval92 have been selected by best WER on Dev93. We aver-
age the reported scores over 3 independent runs. As in previous
sections, CTC denotes the typical, locally normalized variant
(3), CTC-G the globally normalized one (2), and CTC-GB the
globally normalized one with context-dependent blanks. Addi-
tionally, CDE denotes cases for which CD symbol prototypes
were computed using the auxiliary embedding network instead
of a look-up table of prototypes. Our baselines match the results
of other CTC implementations [9, 23, 24]. For reference we
provide LF-MMI results, however not directly comparable due
to their data augmentation techniques.

The gains reported on the Dev93 set, however small, are
consistent and match the conclusions of our theoretical CTC
loss analysis. Locally normalized bi-character CTC yields about
0.2 percentage point WER reduction, with slight gains coming
from using CDE. Globally normalized CD CTC models reach
the best performance, improving upon the baseline by 0.4 per-
centage points. However, the CDE module brings mixed results
for globally normalized bi-character models. It yields a small
reduction of the number of parameters, improves the error rates
when contextual blanks are used, but seems inferior to a simple
prototype look-up table under the typical CTC topology. This
may indicate that a global CTC blank should have a representa-
tion that is unique and separate from other CD symbols, while
the contextual blanks benefit from sharing of their prototypes.

The benefits of using the CDE module with tri-characters
are more apparent. Not only it yields lower error rates, reaching
the best WER with the bigram language model, but also the CDE
module can handle tri-characters not seen during training, and
requires substantially fewer parameters. In our case CDE has
about 324k parameters, while regular embeddings of all 17k
tri-characters allowed by the Tg language model would require
as much as 5.5M parameters.

We attribute the poor performance of the tri-character CTC
when decoded with the trigram LM, to overfitting the internal
language model as described in Section 2.4. In fact, many of
the triphones allowed by the trigram LM are not present in the
training set, and the locally normalized CTC loss will make
them improbable despite their prototypes being tied to other
CD symbols by the CDE module, which yields only a small
improvement over the CI baseline. Unfortunately, our forward-
backward implementation does not allow computing the forward
cost of the denominator graph in (2) with 17k states and we were
not able to build globally normalized tri-character CTC models.

6. Related Work
CD symbols in neural ASR systems improve performance of
CTC [3] and 1-state “chain” HMM models [4], with best results
obtained with decision trees that map contexts to network targets.
In [3] this tree is built from activations of the neural network,
while [4] used a full bigram output which was slightly inferior to
a decision tree obtained using a HMM model. The CDE module
aims to recover the benefits of context-dependent outputs, but in
a fully neural model that is trainable from scratch.

Several authors have proposed to use multicharacter, or mul-
tiphoneme output tokens to reduce the number of emissions. The
DeepSpeech 2 model used non-overlappling character bigrams
[2], while [23] and [25] dynamically chose a decomposition of
the output sequence. This idea was also explored in [26] in
the context of sequence-to-sequence models. We do not aim to
reduce the length of target sequences, but to enable expressing
of dependency of symbol emissions on their context.

Perhaps most similar to our work is [27] in which a neural
network is trained to replace a state-tying decision tree. How-
ever, this implies a multistage training procedure in which both
classical GMM-HMM and neural systems are built. In contrast,
we strive to keep a simple, one stage training procedure.

Finally, Hypernetworks [28] expand on the idea of generat-
ing weights of neural network using an auxiliary module. We
employ this idea in the CDE module and generate the prototypes
for context-dependent symbols.

7. Conclusions
We have analyzed from a theoretical and experimental viewpoint
the behavior of CTC with context-dependent targets. We have
identified and addressed two major shortcomings: overfitting of
locally normalized CTC, and the expansion of the number of pa-
rameters in the final layer of the network. Our proposed solutions
are global normalization of the loss and dynamical computation
of the final weight matrix using an auxiliary neural network,
which allowed us to train compact networks with tri-character
outputs. The changes preserve the simplified training procedure
valued in the neural end-to-end systems, while yielding a 6%
relative WER improvement on the WSJ dataset.

The scope for future work includes better integration with
language models, scaling the global normalization to larger con-
texts, and experiments with LF-MMI chain models. We would
also like to test the method on larger datasets.
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