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Abstract
There is an increasing demand for automated spoken language
assessment (SLA) systems, partly driven by the performance
improvements that have come from deep learning based ap-
proaches. One aspect of deep learning systems is that they do
not require expert derived features, operating directly on the
original signal such as a speech recognition (ASR) transcript.
This, however, increases their potential susceptibility to adver-
sarial attacks as a form of candidate malpractice. In this paper
the sensitivity of SLA systems to a universal black-box attack
on the ASR text output is explored. The aim is to obtain a single,
universal phrase to maximally increase any candidate’s score.
Four approaches to detect such adversarial attacks are also de-
scribed. All the systems, and associated detection approaches,
are evaluated on a free (spontaneous) speaking section from a
Business English test. It is shown that on deep learning based
SLA systems the average candidate score can be increased by
almost one grade level using a single six word phrase appended
to the end of the response hypothesis. Although these large
gains can be obtained, they can be easily detected based on de-
tection shifts from the scores of a “traditional” Gaussian Process
based grader.
Index Terms: spoken language assessment, adversarial attacks,
assessment malpractice

1. Introduction
With the increasing demand for English language learning,
there has been a growth in popularity of automated spoken lan-
guage assessment (SLA) systems. Beyond assessing a candi-
date’s English speaking ability, it is necessary to ensure that a
system is robust to malpractice. The integrity and reliability of
an exam comes under threat when a candidate can take actions
that result in a score that is inconsistent with the exam assess-
ment criteria. This work explores a particular form of malprac-
tice: adversarial attacks. Here small perturbations in the input
yield significant, undesired, changes in the output. Due to the
success of deep-learning (neural) systems in speech [1, 2] and
natural language processing [3, 4] tasks, there is interest in eval-
uating the susceptibility of neural assessment systems to adver-
sarial attacks, and how these attacks can be detected.

When an adversary has access to the the internal structure
of a system, the form of adversarial attack is termed a White Box
attack [5]. However, it is unlikely that an adversary attacking an
automated spoken language assessment system will have access
to the internal workings of the system. Hence, in this work only
black-box, adversarial attacks are considered, where the adver-
sary has no knowledge of the system. Black-box attacks are
grouped into query based approaches [6, 7] and transfer based
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approaches [8, 9]. If a large number of queries is required for a
successful attack, the former approach is easy to detect. Alter-
natively transfer-based approaches rely on similar models being
susceptible to the same adversarial samples [10]. Recent stud-
ies [11, 12, 13] have demonstrated successful transfer of attacks,
but only in situations where the networks are extremely similar
in structure and parameters.

For spoken language assessment systems it is possible to
attack either the audio signal or the word sequence uttered. As
features, either expert or deep-learning based, derived from the
word-sequence are found to accurately predict the grade, this
work focuses on text-based attacks. A wide range of simple
techniques [14, 15, 16] can be employed to construct adversar-
ial attacks. However, due to the discrete nature of the input, the
text sequence, gradient based adversarial attacks are difficult to
implement [17]. A range of text based attacks and detection
approaches have been described in the literature [18, 19]. For
SLA systems this text is derived from a speech recognition sys-
tem; thus the vocabulary is fixed. This means that attacks such
as character-level replacement [20, 21] cannot be used. In this
work a greedy discrete search method for the adversarial attack
is adopted. In particular a universal attack is considered [22],
where a single phrase is found that, for SLA, will increase the
predicted score. Using a universal attack reduces the opportu-
nity for detection, as the attack needs to only be trained once
and just requires the candidate to learn a set phrase. There are
a range of general approaches to adversarial attack detection
[23, 24]. This paper examines the use of perplexity scores [17]
and deep ensembles [25, 24] approaches, as well as a SLA spe-
cific off-topic response detection approach [26]. Additionally, a
detection approach based on a second, feature-based, SLA sys-
tem is also described.

This paper considers adversarial attacks on SLA systems
for multi-level prompt-response free speaking tests i.e. candi-
dates from a range of proficiency levels provide open responses
to prompted questions. Based on this audio input the assess-
ment systems must predict a score of 0-6 corresponding to the 6
CEFR [27] grades. Both feature-based assessment [28, 29, 30]
and deep neural assessment approaches can be used for SLA.
Though the focus of this work is neural assessment, adversarial
attacks on feature-based approaches are also examined.

2. Text Adversarial Attacks
The general form of a targeted adversarial attack is

δ̂ = argmin
δ

{F(x+ δ) = t} s.t. H(x,x+ δ) < ε (1)

where t is the required target outcome from the classifier F(),
x is the observation to be attacked, H() is some “distance” be-
tween the observation, and ε is a threshold at which value the
perturbation on the observation δ is deemed to be noticeable.

This work considers adversarially attacking a free-speaking
spoken language assessment system. In common with other
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systems, assessment is treated as a regression task predicting
a continuous score that is then mapped to one of the CEFR lev-
els. The task is to maximally increase the predicted score given
the ASR output 1. Initially consider appending a fixed phrase to
the end of a valid response,w1:n, to a prompt. Thus

ŵ1:n+k = w1:n ⊕ δ(k) = w1, . . . , wn, w̃1, . . . , w̃k

where the k word adversarial attack is w̃1, . . . , w̃k. The cost
function to be optimised can then be written as

δ̂(k) = argmax
δ∈Vk

{
S∑
s=1

F(w(s) ⊕ δ;θ)

}
(2)

where θ represents the trained model parameters, w(s) is the
valid response for candidate s and Vk is the set of all k length
word-sequences that can be constructed using the ASR vocab-
ulary V . Here, a single adversarial phrase of length k is to be
used for all candidates. Although an adversarial attack could
in theory be generated for each candidate’s recognised word se-
quence, this is highly challenging for a practical system and not
considered further.

As black-box adversarial attacks are most realistic for SLA
systems, it is not possible to optimise the attack using knowl-
edge of the network architecture. In this work an explicit, dis-
crete optimisation approach is adopted. This is challenging
as searching all possible words in the vocabulary is expensive
requiring a large number of queries. Additionally if context-
dependent word embeddings, such as BERT [31], are used then
adding any word alters the embeddings for all other words. To
address this problem a two stage approach is used. Initially
a transfer-based approach is adopted, where a simple context-
independent word-embedding based substitute system [8] is
used to select a subset of words, in this case 100, from the com-
plete vocabulary 2. This subset can then be used to query the
real system to select the optimal word. This approach is felt
to be realistic as only a single universal phrase is needed for
all speakers. The adversarial attack is generated in a “greedy”
fashion where

δ̂(k) = argmax
δ∈Ṽ

{
S∑
s=1

F(w(s) ⊕ δ̂(k−1) ⊕ δ;θ)

}
(3)

where Ṽ is the subset vocabulary determined by the initial sys-
tem. The number of system queries thus increases linearly with
the length of the adversarial attack, and the size of the subset
vocabulary. The attack defined has only considered appending
a phrase at the end of an utterance. In practice this is the sim-
plest for a candidate to append to a standard response, but other
positions can be considered.

Having obtained a universal phrase to attack the system it is
possible to examine approaches to detect these attack phrases,
which can also be incorporated into adversarial attack genera-
tion if the defence mechanism is known. The form of adversar-
ial attack in equation (2) imposes no constraints on the words
being appended to the original sequence. It is therefore possible
that by using a language model of “standard” non-native speak-
ers of English it is possible to detect the adversarial attacks [17].

1Exactly how the adversarial output from the ASR system is pro-
duced is not considered in this paper. It is possible that the candidate
could simply speak the word sequence, assuming that the ASR is accu-
rate, or the ASR system itself may be adversarially attacked.

2Here knowledge of the vocabulary is assumed. In practice provided
the selected subset is large enough this knowledge is not necessary.

In general, it is not possible to know the location of the attack.
Thus it is necessary to consider the average perplexity of the
complete sequence, normalised by the sequence length. As a
refinement to this basic model, found in initial experiments to
yield a small improvement, a grade-dependent language model
was used, based on the predicted grade from the neural assess-
ment system. The metric used to assess whether an adversarial
attack is being used is:

log (P (ŵ1:n+k|ĝ)) /(n+ k) > β (4)

where an initial sentence start symbol is added as w0, ĝ is the
predicted grade from the neural assessment system 3.

One general approach for detecting adversarial attacks is
to examine the consistency of the ensemble of predictors [24].
For the regression task being examined here the variance of the
ensemble predictions can be used. The detection mechanism is

1

M

M∑
i=1

[
F(ŵ1:n+k;θ

(i))
]2
−

[
1

M

M∑
i=1

F(ŵ1:n+k;θ
(i))

]2

> β

In this work, where deep-learning approaches are used, a simple
ensemble can be generated by using different seeds to randomly
initialise the model training and a simple average to obtain an
ensemble prediction.

For SLA one of the standard approaches to detecting mal-
practice, as well as detecting when a candidate cannot generate
an appropriate response to a prompt, is to use off-topic response
detection [26]. If a candidate appends an optimal adversarial at-
tack phrase to the end of a valid response to the prompt, this
may impact the relevance of the response to the prompt. Thus
the detection mechanism is based on

P (rel|p, ŵ1:n+k) < β (5)

where p is the prompt associated with the response. Here a
hierarchical attention based topic model (HATM) for off-topic
spontaneous response detection [33] was used.

As previously discussed, two forms of SLA systems can
be considered, a neural-based approach and systems based on
expert features. Feature-based approaches are expected to be
less sensitive to adversarial attacks. Thus differences in per-
formance between the two systems can be used for attack de-
tection. Considering a feature-based system using a GP-based
grader, attack detection is based on:

F(ŵ1:n+k;θ)− map(Fgp(φ(ŵ1:n+k))) > β (6)

where φ() is the feature extraction process for the word-
sequence. Rather than using the raw predicted GP-score, a
mapped version is used based on a linear mapping, map() from
the GP-score to the neural assessment score estimated on a held-
out data set. This should handle, for example, the mismatch in
the average scores from the two forms of grader in Table 2.
For each detection scheme, the threshold β is varied to generate
precision-recall curves.

3. Experiments
Experiments were run on answers to the Linguaskill-Business
(L-Bus) Use of Business English test [34], where the candidate
responds to prompts from five different groups (sections A-E)

3The grade-dependent LM was implemented using the CUED-
RNNLM v1.1 toolkit [32]
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to predict the final grade. The training and test data consists
of non-native English spoken by candidates from 6 L1s (first
language). A held-out evaluation set of 202 speakers, approx-
imately balanced for L1 and across the CEFR grades (A1-C4)
was used for testing. For this data the ASR system had an aver-
age word error rate of 19.5%. Reference scores were provided
by expert graders. The graders were trained on a set of ∼900
speakers from the same set of L1s, using operational grader ref-
erence scores. A held-out subset of 200 speakers, balanced for
grade and L1, was used to determine the adversarial phrases.

In this work all graders were constructed to predict scores
for each of the five sections, then the scores averaged to yield
the final score. Two feature-based graders were built; one GP-
based [35] (GPtxt) and the other DNN-based [36] (DNNtxt).
The features for these systems were the text features described
in [35]. For the neural assessment system (Neurtxt)5, BERT was
used to extract the word-embeddings, followed by a multi-head-
self attention mechanism [37]. The output of this process was
then fed to the same DNN configuration as [36]. For the neural
systems an ensemble of 10 models were built and the predic-
tions averaged to yield the final score.

To confirm that the most important features were text-
based, motivating attacking these in the SLA, three deep neu-
ral assessment systems were examined: the text based system
(Neurtxt); a deep pronunciation system [38] (Neurpron) and a
rhythm based system [39] (Neurrytm). Table 1 presents the per-
formance of these neural-based systems, as well as a text only
(GPtxt) and all [35] (GPall) feature-based GP system on the over-
all test performance (the average over all sections A-E). The
system is assessed in terms of Pearson Correlation Coefficient
(PCC) and RMSE to the expert scores, as well as the percentage
of predictions within half (<0.5) and one (<1.0) grade level of
the expert score.

Table 1: Baseline Performance of, sections A-E, graders.

System PCC RMSE <0.5 <1.0
Neurtxt 0.878 0.587 66.8 91.4
Neurpron 0.819 0.699 54.1 85.5
Neurrytm 0.815 0.697 55.9 86.4
Neur{txt⊕pron⊕rytm}
α = [0.83, 0.04, 0.13]

0.884 0.581 67.0 90.5

GPtxt 0.855 0.643 60.4 87.7
GPall 0.881 0.606 60.5 91.4

Table 1 clearly shows that for both the feature and ensemble
neural-based systems, the text features are the most important.
The optimal linear combination of the neural systems gives a
weight of 0.83 to the prediction from the text system. The table
also illustrates that pure neural systems are highly competitive
with expert derived systems, without the need to define features.
Comparing the GP and neural systems with text only features
shows that more information can be extracted by the neural ap-
proach than hand derived features. Given the dominance of the
text features in performance, text-based adversarial attacks are
of most relevance to SLA.

As each of the sections of the test have different attributes,
and different neural assessment systems, it is sensible to gen-
erate a different universal attack for each section. This work
focused on section C where candidates can talk for up to 60

4Due to limited data grades C1 and C2 are combined.
5Available at: https://github.com/rainavyas/

NeurTxtGrader

Table 2: Baseline performance (on section C) of the text-based
GP and Neural graders. ± indicates the standard deviation.

Grader Score PCC RMSE <0.5 <1.0
GPtxt 3.88 0.749 0.786 54.0 80.7
Neurtxt 3.49

±0.14
0.744
±0.01

0.818
±0.06

48.9
±6.55

79.4
±2.86

-ensemble 3.49 0.749 0.727 59.9 83.2
GPtxt⊕Neurtxt 3.69 0.774 0.678 61.4 83.7

seconds on a prompted topic. The average response length was
41 seconds of speech. Table 2 shows the baseline performance
of the text deep neural model and the feature-based GP model.
In addition to the ensemble performance the single system per-
formance is also given for the neural system. To construct the
adversarial attack only one of the members of the ensemble was
used. It was found that this attack transferred to all members
of the ensemble, as expected from the relatively small standard
deviation. The table also shows that the neural and GP systems
are complementary.

The substitute model [8], used to obtain the subset vocabu-
lary needed for the discrete greedy search adversarial attack of
the text-based graders, employed a different text-based architec-
ture for grading. The embedding stage used a simple, context
independent word2vec [40] transformation. The 100 most ef-
fective adversarial attack words for the substitute system were
then used for the subset vocabulary, as described in section 2.

Figure 1: Transferability of k-word attack phrase found for the
Neural model trained on L-Bus, section C

The text-based neural grader for section C of the Lin-
guaskill business test was then adversarially attacked using the
approach in section 2. The change in the average score as the
number of words in the universal phrase is increased is shown
in figure 1. The average response length for this section was
79 words. After adding a 20 word phrase the performance6 has
almost saturated at 5.7 out of 6 in terms of the average system
score over all test speakers. It is also of interest to see how
this universal attack performs on a task with different types of
topics in the prompts (the Linguaskill general test with aver-
age response length 83 words) and a different form of prompt
question (section D average response length 85 words). Though
for both systems the average score is increased, the increase is
approximately half that of the matched attack.

6As a sanity check random k length “phrases” from the vocabulary
were also used. As expected these did not improve the average score.
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Table 3: Impact of the 6 word Neural adversarial attack NEUR-adv
or GP adversarial attack GP-adv on different graders

Grader (+adv) Score PCC RMSE <0.5 <1.0
GPtxt 3.88 0.749 0.786 54.0 80.7
+ GP-adv 4.27 0.744 1.037 30.7 68.3
+ NEUR-adv 4.02 0.749 0.863 49.0 76.7
DNNtxt 3.70 0.750 0.732 56.9 83.7
+ GP-adv 4.23 0.691 1.038 31.7 72.3
+ NEUR-adv 3.84 0.750 0.772 53.0 82.7
Neurtxt 3.49 0.749 0.727 59.9 83.2
+ GP-adv 3.54 0.753 0.702 58.4 83.2
+ NEUR-adv 4.33 0.700 1.110 27.2 62.9

Rather than operating near the saturation point for the at-
tack, a shorter attack of length 6 was used for a detailed anal-
ysis of the system. This shorter attack still yielded an increase
in the average score of 0.84, and should be more challenging to
detect. Table 3 shows the impact of adversarial attack phrase
(NEUR-adv), on the neural assessment system and the GP text
system. Though again both scores are increased, the GP-based
grader only increased by 0.14, significantly less than the neural-
based system. In addition Table 3 shows the impact of an ad-
versarial attack on the GP feature-based system (GP-adv). The
feature-based system is less sensitive than the neural system to
adversarial attacks, with minimal transfer of the GP-based at-
tack to the neural system. Finally an alternative DNN feature-
based systems (DNNtxt) was also examined. This system is far
more impacted by the GP-optimised attack rather than the Neu-
ral. This is expected as the same set of features are used.

From Table 3 the impact of the adversarial attack NEUR-adv
on the Neural assessment system Neurtxt is very large, decreas-
ing the number of candidates within half a grade point from
almost 60% to less than half that, 27.2%. This motivates the
use of the adversarial attack detection approaches described in
section 2. As the penalty for incorrectly detecting an adver-
sarial attack is high, the candidate may be rejected or given a
score of 0, precision is more important than recall for this task.
Thus F0.5 is used to give a single point summary of the system
performance.

Figure 2: Precision-Recall curves for different detection ap-
proaches for the Neural assessment system with 6 NEUR-adv
words

Figure 2 shows the precision and recall curves and the opti-
mal F0.5 value for the four detection schemes from section 2 as

β varies. The performance of the off-topic response detection
is the worst, as only a short adversarial phrase is appended to
a valid, on-topic, response. Although ensemble diversity and
perplexity show reasonable performance, the best performing
detection scheme is GP shift, with an F0.5 score of 0.8.

The current adversarial attack is based on appending the
adversarial attack to the end of the response. In order to assess
the transferability of this attack to different positions the same
6 word phrase was appended to the beginning or to the middle
of the original response for the NEUR-adv attack. This yielded
average score values of 4.08 and 4.13 respectively, compared
to appending to the end of 4.33. Thus a large grade increase of
greater than half a grade was possible even for these sub-optimal
attacks for the neural grader.

Table 4: Detection evasion attacks on the Neural grader

Grader (+adv) Score PCC RMSE <0.5 <1.0
Neurtxt 3.49 0.749 0.727 59.9 83.2
+ NEUR-adv 4.33 0.700 1.110 27.2 62.9
+ GP-Det-adv 4.15 0.715 0.975 35.1 69.8
+ PERP-Det-adv 4.22 0.711 1.020 32.7 66.3

It is possible to attack a system with knowledge of the de-
fence mechanism. Attacks were generated independently to
evade the GP Shift (GP-Det-adv) and perplexity (PERP-Det-
adv) detection processes by ensuring that the final GP shift and
perplexity were less than the corresponding thresholds used to
generate the F0.5 scores in Figure 2. These attacks (Table 4)
yield lower increases in the average score (4.15 and 4.22 cor-
respondingly) than the unconstrained NEUR-adv attack. It is of
course possible to operate at lower thresholds for the detection
evasion attacks, or combine the detection approaches, to further
reduce the impact of adversarial attacks.

4. Conclusions
This paper has examined a simple, universal black-box adver-
sarial attack for deep-learning based spoken assessment sys-
tems. The aim is to generate a single, universal phrase that
when uttered at the end of a valid response to a prompt will
improve the performance of any candidate. The system is eval-
uated on a free-speaking section of an English assessment test,
Linguaskill Business. The paper shows that spoken language
assessment systems are susceptible to these universal attacks.
Even a short six word phrase can yield nearly a one point in-
crease in the average grade for the test speakers. The impact
of adversarial attacks for these neural systems is compared to
more traditional feature-based systems which are found to be
less sensitive to adversarial attacks. Four defence mechanisms,
including the standard perplexity score, as well as assessment
specific schemes, are also discussed. These can accurately de-
tect attacks, but can also be used as part of the adversarial attack
generation, if the form of detection is known.

The work in this paper has focused on the system using only
the text from the ASR system as this yields the most important
features for spoken language assessment, and it is easy for a
candidate to learn a single phrase to utter in addition to their
standard response. Universal attacks on other features, such as
pronunciation features, are also possible and will be examined
in future work.

3858



5. References
[1] G. Hinton et al., “Deep neural networks for acoustic modeling in

speech recognition,” IEEE Sig. Proc. Magazine, vol. 29, pp. 82–
97, November 2012.

[2] A. van den Oord et al., “Wavenet: A generative model for raw
audio,” in Proc. of Speech Synthesis Workshop (SSW), 2016.

[3] I. Sutskever et al., “Sequence to sequence learning with neural
networks,” in Proc. of 27th Int. Conf. on Neural Information Pro-
cessing Systems, 2014, pp. 3104–3112.

[4] H. Xu et al., “Text classification with topic-based word embed-
ding and convolutional neural networks,” in Proc. of 7th ACM Int.
Conf. on Bioinformatics, Computational Biology, and Health In-
formatics, 2016, pp. 88–97.

[5] N. Carlini and D. A. Wagner, “Towards evaluating the robustness
of neural networks,” CoRR, vol. abs/1608.04644, 2016. [Online].
Available: http://arxiv.org/abs/1608.04644

[6] A. Ilyas et al., “Prior convictions: Black-box adversarial attacks
with bandits and priors,” CoRR, 2018. [Online]. Available:
https://arxiv.org/pdf/1807.07978

[7] Z. Yan et al., “Subspace attack: Exploiting promising
subspaces for query-efficient black-box attacks,” CoRR, vol.
abs/1906.04392, 2019. [Online]. Available: http://arxiv.org/abs/
1906.04392

[8] N. Papernot et al., “Practical black-box attacks against deep
learning systems using adversarial examples,” CoRR, 2016.
[Online]. Available: http://arxiv.org/abs/1602.02697

[9] S. Moosavi-Dezfooli et al., “Universal adversarial perturbations,”
CoRR, vol. abs/1610.08401, 2016. [Online]. Available: http:
//arxiv.org/abs/1610.08401

[10] A. Kurakin et al., “Adversarial machine learning at scale,” in Proc.
of International Conference on Learning Representations (ICLR),
2017.

[11] Y. Liu et al., “Delving into transferable adversarial examples and
black-box attacks,” CoRR, vol. abs/1611.02770, 2016. [Online].
Available: http://arxiv.org/abs/1611.02770

[12] C. Xie et al., “Improving transferability of adversarial examples
with input diversity,” CoRR, vol. abs/1803.06978, 2018. [Online].
Available: http://arxiv.org/abs/1803.06978

[13] N. Inkawhich et al., “Feature space perturbations yield more
transferable adversarial examples,” in Proc. of IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 7059–7067.

[14] A. Madry et al., “Towards deep learning models resistant to
adversarial attacks,” CoRR, vol. abs/1706.06083, 2017. [Online].
Available: http://arxiv.org/abs/1706.06083

[15] A. Kurakin et al., “Adversarial examples in the physical world,”
in Proc. of International Conference on Learning Representations
(ICLR), 2017.

[16] N. Papernot et al., “The limitations of deep learning in adversarial
settings,” in Proc. of IEEE European Symposium on Security and
Privacy (EuroS&P), 2015, pp. 372–387.

[17] Q. Lei et al., “Discrete adversarial attacks and submodular opti-
mization with applications to text classification,” in Proc. of Ma-
chine Learning and Systems, 2019, pp. 146–165.

[18] W. Wang et al., “Towards a robust deep neural network in
texts: A survey,” CoRR, vol. abs/1902.07285, 2019. [Online].
Available: http://arxiv.org/abs/1902.07285

[19] M. Alzantot et al., “Generating natural language adversarial ex-
amples,” in Proc. of Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2018, pp. 2890–2896.

[20] J. Ebrahimi et al., “Hotflip: White-box adversarial examples for
NLP,” CoRR, vol. abs/1712.06751, 2017. [Online]. Available:
http://arxiv.org/abs/1712.06751

[21] P. Yang et al., “Greedy attack and gumbel attack: Generating ad-
versarial examples for discrete data,” CoRR, vol. abs/1805.12316,
2018. [Online]. Available: http://arxiv.org/abs/1805.12316

[22] M. Behjati et al., “Universal adversarial attacks on text classi-
fiers,” in Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019, pp. 7345–7349.

[23] T. Pang et al., “Robust deep learning via reverse cross-entropy
training and thresholding test,” CoRR, vol. abs/1706.00633, 2017.
[Online]. Available: http://arxiv.org/abs/1706.00633

[24] A. Malinin and M. J. Gales, “Reverse KL-divergence training of
prior networks: Improved uncertainty and adversarial robustness,”
in Proc. of Advances in Neural Information Processing Systems 32
(NeuRIPS), 2019, pp. 14 520–14 531.

[25] T. Strauss et al., “Ensemble methods as a defense to adversarial
perturbations against deep neural networks,” 2017. [Online].
Available: http://arxiv.org/abs/1709.03423

[26] V. Raina et al., “Complementary systems for off-topic spoken re-
sponse detection,” in Proceedings of the Fifteenth Workshop on
Innovative Use of NLP for Building Educational Applications.
Association for Computational Linguistics, Jul. 2020, pp. 41–51.

[27] Council of Europe, Common European Framework of Reference
for Languages: Learning, Teaching, Assessment. Cambridge
University Press, 2001.

[28] K. Zechner, D. Higgins, X. Xi, and D. M. Williamson, “Auto-
matic scoring of non-native spontaneous speech in tests of spoken
English,” Speech Communication, vol. 51, no. 10, pp. 883–895,
2009.

[29] D. Higgins, X. Xi, K. Zechner, and D. Williamson, “A three-
stage approach to the automated scoring of spontaneous spoken
responses,” Computer Speech and Language, vol. 25, no. 2, pp.
282–306, 2011.

[30] R. van Dalen et al., “Automatically grading learners’ English us-
ing a gaussian process,” in Proc. of ISCA Workshop on Speech and
Language Technology for Education (SLaTE), 2015.

[31] J. Devlin et al., “BERT: pre-training of deep bidirectional trans-
formers for language understanding,” in Proc. of 2019 Confer-
ence of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-
HLT), 2019, pp. 4171–4186.

[32] X. Chen et al., “CUED-RNNLM – an open-source toolkit for effi-
cient training and evaluation of recurrent neural network language
models,” in Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015.

[33] A. Malinin et al., “A hierarchical attention based model for
off-topic spontaneous spoken response detection,” in Proc. of
IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU), Dec 2017, pp. 397–403.

[34] L. Chambers and K. Ingham, “The BULATS online speak-
ing test,” Research Notes, vol. 43, pp. 21–25, 2011.
[Online]. Available: http://www.cambridgeenglish.org/images/
23161-research-notes-43.pdf

[35] Y. Wang et al., “Towards automatic assessment of spontaneous
spoken english,” Speech Communication, vol. 104, pp. 47–56,
2018.

[36] A. Malinin et al., “Incorporating uncertainty into deep learning
for spoken language assessment,” in Proc. of 55th Annual
Meeting of the Association for Computational Linguistics (ACL),
2017, pp. 45–50. [Online]. Available: https://doi.org/10.18653/
v1/P17-2008

[37] A. Vaswani et al., “Attention is all you need,” in Proc. of 31st
International Conference on Neural Information Processing Sys-
tems, 2017, p. 6000–6010.

[38] K. Kyriakopoulos et al., “A deep learning approach to assess-
ing non-native pronunciation of english using phone distances,”
in Proc. of INTERSPEECH, 2018, pp. 1626–1630.

[39] K. Kyriakopoulos, K. M. Knill, and M. J. F. Gales, “A deep
learning approach to automatic characterisation of rhythm in non-
native English speech,” in Proc. of INTERSPEECH, 2019, pp.
1836–1840.

[40] T. Mikolov et al., “Efficient Estimation of Word Representations
in Vector Space,” CoRR, vol. abs/1301.3781, 2013. [Online].
Available: http://arxiv.org/abs/1301.3781

3859


