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Abstract
With the development of speech emotion recognition (SER),
dialogue-level SER (DSER) is more aligned with actual sce-
narios. In this paper, we propose a DSER approach that in-
cludes two stages of representation learning: intra-utterance
representation learning and inter-utterance representation learn-
ing. In the intra-utterance representation learning stage, tradi-
tional convolutional neural network (CNN) has demonstrated
great success. However, the basic design of a CNN restricts its
ability to model the local and global information in the spec-
trogram. Therefore, we propose a novel local-global represen-
tation learning method for the intra-utterance stage. The local
information is learned by a time-frequency convolutional neu-
ral network (TFCNN), which we published previously. Here,
we propose a time-frequency capsule neural network (TFCap)
to model global information that can extract more stable global
time-frequency information directly from spectrograms. In the
inter-utterance stage, a graph convolutional network (GCN) is
introduced to explore the relations between utterances in a dia-
log. Our proposed methods were evaluated on the IEMOCAP
database. The proposed time-frequency based method in the
intra-utterance stage achieves an absolute increase of 9.35%
compared to CNN. By integrating GCN in the inter-utterance
stage, the proposed approach achieves an absolute increase of
4.05 % compared to the model in the previous stage.
Index Terms: dialogue level speech emotion recognition, cap-
sule neural network, time-frequency

1. Introduction
Affective computing is a promising field of research that aims to
endow intelligent systems to perform like humans and provide
better service and information that people seek. Speech is the
most commonly used communication method in the daily lives
of people; therefore, speech emotion recognition (SER) has a
very realistic and scientific research value [1]. Human speech
contains a variety of emotion-related information, and therefore
learning effective emotional representations is crucial to SER
systems [2].

Emotional representation extraction methods can be cate-
gorized as traditional methods and deep learning methods. In
traditional methods, such as mel-frequency cepstral coefficients
(MFCC) [3], linear prediction cepstral coefficients (LPCC) [4],
prosodic features [5, 6, 7], and the statistics of these seg-
ment features [8] perform well in automatic speech recognition
(ASR) tasks, but these are not suitable for SER.
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Recently, with the rapid development of deep learning, nu-
merous deep learning methods [9, 10, 11] have been intro-
duced to SER. Among these deep learning models, convolu-
tional neural network (CNN)-based models have achieved more
competitive results. Satt et al. [12] proposed a famous model
that used a CNN to learn emotional features from the spec-
trogram, and introduced bidirectional long short-term mem-
ory (BLSTM) to model the contextual information in an utter-
ance. The CNN BLSTM model has become the most widely
adopted baseline model. However, this model ignored the spe-
cial form of the spectrogram (time-frequency). In our previ-
ous work [13], three types of filters were used to capture the
ignored time-frequency related information, which was called
time-frequency CNN (TFCNN). However, TFCNN still faces
the same problems as CNN, and the information is extracted
from the local region.

In addition to the above-mentioned local problems of CNN
and TFCNN, ubiquitous pooling layers usually inevitably drop
some useful information. In response to the problems of CNN-
based models, Sabour et al. [14] proposed a capsule network
(CapsNet) that was quickly introduced in various research fields
[15, 16, 17]. CapsNet contains vectors that represent the instan-
tiation parameters of various global spatial information. The
one-dimensional vectors and routing algorithm enable the Cap-
sNets to model the global information well. However, it is
unstable, and the learned representation is shallow. In [18], a
densely connected capsule network (DenseCap) was proposed
with a new routing algorithm that stacked the capsule lay-
ers to alleviate existing problems. Although the performance
of DenseCap is better than that of CapsNet, the root of the
problems—the poor robustness of the original one-dimensional
structure in these works— remains unsolved.

We propose a time-frequency capsule neural network (TF-
Cap) to solve the root of the problems existing in Cap-
sNet and DenseCap. The TFCap is based on the newly de-
signed matrix vectors (time-frequency) and a supporting rout-
ing algorithm. The time-frequency vectors explore more sta-
ble two-dimensional information to avoid mutation of one-
dimensional vectors. Compared with one-dimensional vectors,
time-frequency vectors have a wider range of length and direc-
tion, and maintain more global information. With the help of
the proposed local-global time-frequency representation learn-
ing method, the proposed TFCNN TFCap can learn more dif-
ferent and useful information than the traditional CNN model
and CapsNet.

Due to the lack of inter-utterance contextual information,
the current research on SER (intra-utterance stage) cannot ser-
vice real-life applications, such as supporting dialogue sys-
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tems and generating more human-like speech . Therefore, we
conduct further research on the dialogue-level (inter-utterance
stage) SER to fit the needs of these real-life applications. Graph
neural networks (GNNs) [19, 20] have received growing atten-
tion recently. In particular, the graph convolutional network
(GCN) [21] was proposed by Kipf, which achieved state-of-
the-art results in numerous benchmark datasets. The GCN was
introduced in our work to learn the hidden relations between
the utterances. The proposed model (TFCNN TFCap)+GCN
can model the contextual information in the intra-utterance and
inter-utterance stages.

Our proposed dialogue-level SER (DSER) approach
(TFCNN TFCap)+GCN overcomes the limitations of the afore-
mentioned methods. The contributions of our work can be sum-
marized as follows: 1) TFCNN TFCap using matrix vectors
to model local-global time-frequency information in the intra-
utterance stage is proposed. 2) A GCN is introduced to model
the contextual information in the inter-utterance stage.

2. Dialogue-level SER Representation
learning

2.1. The intra-utterance and inter-utterance stage in DSER

The proposed system as shown in Fig. 1 mainly consists
two stages which are local-global time-frequency representation
learning stage (intra-utterance stage) and dialogue-level contex-
tual information learning stage (inter-utterance stage).The intra-
utterance stage contains two steps: the first step is local-global
time-frequency representation learning using TFCNN TFCap.
The TFCNN is the same as the model in [13]. The represen-
tations RL and RG, are learned in the first step. The second
step is intra-utterance classification, using BLSTM. The second
stage is the inter-utterance stage, which is based on the intra-
utterance stage representation. The details of the proposed TF-
Cap are presented in Fig. 2, and the details of the GCN model
in the inter-utterance stage are shown in Fig. 3.
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Figure 1: Dialogue-level SER representation learning system.

2.2. Global time-frequency representation learning

Compared with traditional CNNs, CapsNet uses a group of neu-
rons, the length of which represents the existence probability
and the orientation represents the instantiation parameters of
various global spatial information. In other words, CapsNet
outputs one-dimensional vectors instead of scalar values, which
enables it to model global spatial information . The introduced
one-dimensional vectors lead to an unstable original routing al-
gorithm. We propose TFCap to solve the problems of the tradi-
tional CNN and CapsNet.

The (uti, ufi) represents the i-th output of a capsule in the
l − 1 layer. The “prediction time-frequency vectors” û(T, F )
is produced by

û(T, F ) =

N−1∑
n=0

T−1∑
t=0

F−1∑
f=0

(unti, unfi)K(T − t, F − f) (1)

û(T, F ) =
∑

N
(ûtj|i, ûfj|i) (2)

In Eqs (1) and (2), N represents the input capsule number,
T and F represent the input time and frequency dimensions,
respectively, and K represents the kernel function. We use 2D-
convolution functions to replace multiplying the weight s. The
padding is the same in the convolution, and the output size re-
mains the same as the input size.

(stj , sfj) =
∑
i

(citj ûtj|i, cifj ûfj|i) (3)

In Eq. (3), (stj , sfj) is the outer capsule. citj and cifj are
coupling coefficients determined by Eqs (4) and (5).

citj =
exp(bitj)∑

k

exp(bitk)
(4)

cifj =
exp(bifj)∑

k

exp(bifk)
(5)

In this step, we get the output of N capsules:

SN =
∑

N
(stj , sfj) (6)

At the same time, we can rewrite Eq. (6) as:

SN = [s1, · · ·, sn · · · sN ] (7)

In Eq. (7), SN can be treated as N matrix vectors, and
the element sn has a size T × F . Matrix vectors contain
two-dimensional information, and the structure is more stable.
Based on the structural changes, we focus on N , the number of
capsules.

In this step, we mainly have two concerns: 1) The informa-
tion we obtain in each matrix vector represents different ’obvi-
ous features’, which are treated equally. However, these com-
ponents relate to emotion differently. 2) The sudden change is
enhanced by the routing algorithm, and there is no mechanism
to correct sudden change errors. Therefore, the generation of
a suitable weight for each capsule matrix vector is important.
Hence, we introduce capsule-wise attention in this step to ad-
dress these concerns. The n − th capsule in S is determined
by

wn =
1

T × F

T−1∑
t=0

F−1∑
f=0

sn(t, f) (8)

Such capsule weights can be viewed as a collection of
time–frequency descriptors, whose statistics contribute to ex-
press the whole capsule layer. In Fig. 2, Ti × Fi × Ni is the
input size of the primary capsule layer, and To × Fo × No is
the output size of the TFCap. T is the size of time, F is the size
of the frequency, and N is the capsule number. GP (•) is the
global average pooling, and f(•) is the ’Softmax’ function. In
this study, the input size is 4 × 28 × 64, and the output size is
8× 32× 4.
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Figure 2: The proposed model time-frequency capsule network (TFCap)

ŜN=[w1s1, · · ·wjsj , · · ·wNsN ]
= [ŝ1, · · ·ŝj , · · ·ŝN ]

(9)

The final step is nonlinear activation, where we intro-
duce the similar activation with CapsNet, which is also called
’squash’. However, the ’squash’ has two dimensions (time, fre-
quency).

(vtj , vfj) =
‖(ŝtj , ŝfj)‖2

1 + ‖(ŝtj , ŝfj)‖2
(ŝtj , ŝfj)

‖(ŝtj , ŝfj)‖
(10)

In the proposed TFCap, (citj , cifj), (ŝtj , ŝfj), and (vtj , vfj)
are updated according to Eqs. (1)–(11). To increase the ac-
curacy of (citj , cifj), (citj , cifj) is updated according to the
following rule :

(citj , cifj)← (citj , cifj) + (citj , cifj)(vtj , vfj) (11)

In summary, we reconstructed the data organization form
of the capsule network and updated the new routing algorithm.
The proposed TFCap can extract global time-frequency infor-
mation directly from the spectrogram. The newly designed ar-
chitecture is sufficiently stable to explore a more global repre-
sentation.

2.3. Inter-utterance stage contextual representation learn-
ing

As shown in Fig. 3, we first used the intra-utterance contextual
information learned by BLSTM in the previous stage. We then
transform the intra-utterance contextual representation into a di-
alogue format. For example, a dialog consists of K utterances.
The dialogue-level representation HD is the input data.

HD= [h1,h2, · ··, hk, · · ·hK ] (12)
hk represents intra-utterance representation. The representa-
tion of each utterance is treated as one node, and the rela-
tions between the utterances are the edges. The directed graph
G = (HD, ε), and the edge is (hi, r, hj) ∈ ε. The hidden state
in the t-th layer is

h
(t)
i = σ

(
GT

i (h
(t−1)
i W + b)∑

Gi

)
(13)

σ() is an activation function; we use ReLU() in this study . W
is the weight matrix and b is the bias. Finally, we obtain the
inter-utterance representation ĤD .

3. Experiments and analysis
3.1. Experimental Setup

To verify the effectiveness of the proposed TFCap and dialogue-
level SER, we set up three groups of experiments. The first

BLSTM

Utterances trans to Dialogue

1h

2h

3h

kh

GCN

1ĥ

2ĥ

3ĥ

ˆ
kh

DH ˆ
DH

Intra-
utterance 
Relations

Iner-
utterance 
Relations

Figure 3: Inter-utterance representation learning (GCN).

group of experiments are visualization. The second group
shows the classification results in the intra-utterance stage.
The last group shows the classification result at the dialogue-
level. The interactive emotional dyadic motion capture database
(IEMOCAP) [22] is a database . We only used audio data,
which had 5,531 utterances and sampled at 16KHz. The data
consisted of four emotion categories: neutrality (29%), anger
(20%), sadness (20%), and happiness (31%). The length of
each segment containing effective emotional information is thus
an open problem, and in this study, we use the same prepro-
cessing method as Satt et al. [12]. The time of each seg-
ment is 265ms, and the input spectrogram has the following
time×frequency : 32×128. We choose cross entropy as the
cost function, Adamax as the optimizer, and ReLU as the acti-
vation. The batchsize was set to 128. There were five sessions
in the IEMOCAP. Considering the form of data organization at
the dialoguelevel, we set session 1 to session 4 as the training
data, and session 5 as the testing data.

3.2. Experiment results and analysis

The evaluation criteria of the classification results are weighted
accuracy (WA), unweighted accuracy (UA), and F1-score.

3.2.1. Visualization

To observe the representations extracted by CapsNet, the pro-
posed TFCap, TFCNN [13], and proposed TFCNN TFCap, t-
distributed stochastic neighbor embedding (t-SNE) [23] was in-
troduced to visualize the four emotional categories, as shown in
Fig. 4.( 0: Ne, 1: An, 2: Sa, 3: Ha)

We find that the distribution in Fig. 4(a) is different from the
other three. The blue points (Sadness) were distributed through-
out the range. The performance of Fig. 4(d) is the best, which
combines the advantages of Fig. 4(b) and Fig. 4(c). In partic-
ular, the distribution of the purple points (happiness) have the
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Figure 4: The t-SNE visualizations of extracted representations

best degree of aggregation.

3.2.2. Classification results of inra- and inter- utterances

To quantitatively evaluate the performance of the proposed
model, the classification results of the four comparative ex-
periments are provided in Table 1. The baseline model is a
CNN [12]. For a fair comparison, all the experiments in the
intra-utterance stage used BLSTM as the contextual informa-
tion learning method, as shown in Table 1. Our proposed global
model TFCap achieved 64.71% with absolute increments of
4.92% and 3.55% over CapsNet and DenseCap on WA respec-
tively . The proposed local-global time-frequency representa-
tion learning method TFCNN TFCap achieved 71.88% with ab-
solute increments 9.35% and 8.06% over CNN and TFCNN on
WA. The classification results in Table 1 prove two phenomena:
the proposed TFCap is effective, and even has a performance
similar to TFCNN; the local-global time-frequency representa-
tion learning frame is effective.

Table 1: The results in intra-utterance stage

Model WA(%) UA(%) F1(%)
CNN [9] 62.53 63.78 62.98

TFCNN [12] 63.82 65.53 64.06
CapsNet [2] 59.79 61.91 59.82

DenseCap [14] 61.16 61.46 61.44
TFCap 64.71 62.96 64.20

TFCNN TFCap 71.88 69.60 72.25

The next group of experiments evaluates the effectiveness
of the inter-utterance stage. Based on the previous experiments
in Table 1, the results for the inter-utterance stage are shown in
Table 2. In addition, two groups of confusion matrices for the
proposed models in Table 2 are shown in Fig. 5.

From Table 2 and Fig 5, three phenomena were observed.
The first is the increase in accuracy. The two experiments
achieved 1.79% and 4.05% WA improvements, respectively.
Second, the sensitivity to the four emotions is different. In
IEMOCAP, the results in the intra-utterance stage have a higher
sensitivity to neutrality and anger. On the contrary, the results in
the inter-utterance stage have a higher sensitivity to sadness and
happiness. Sadness and happiness are two two distinct atmo-
spheres that are contained throughout the dialogue. More talk-
ing leads to better performance. Third, happiness is recognized

as the most difficult. However, we obtained the best results for
the proposed local-global time-frequency frame.

Table 2: The ablation experiments in inter-utterance stage

Model WA(%) UA(%) F1(%)
TFCNN [12] 63.82 65.53 64.06

TFCap 64.71 62.96 64.20
TFCNN TFCap 71.88 69.60 72.25
TFCNN+GCN 65.40 63.39 64.42
TFCap+GCN 66.50 64.85 65.60

(TFCNN TFCap)+GCN 75.93 72.73 72.92

(a) TFCap (b) TFCap GCN

(c) TFCNN TFCap (d) (TFCNN TFCap)+GCN

Figure 5: Two groups of confusion matrices of proposed models

4. Conclusions
Herein, we studied the local and global spatial representa-
tions from spectrograms combined with GCN for dialogue-level
SER. The local representation is extracted from our previous
work, TFCNN. The global representation was extracted using
TFCap. TFCap is based on matrix vectors and a new rout-
ing algorithm. We also introduce GCN to model dialogue-
level contextual information. The effectiveness of the pro-
posed TFCNN+TFCap and GCN was verified through a se-
ries of comparative experiments on IEMOCAP. The proposed
model achieved 71.88% in the intra-utterance stage and 75.93%
in the in inter-utterance stage. In particular, the proposed TFCap
model shows a significant improvement which can not only be
used in SER, but also in many other speech tasks based on the
spectrogram. The proposed architecture also provides a good
direction for promoting research on SER .

5. Acknowledgements
This work was supported by the National Key R&D Program
of China under Grant 2018YFB1305200, the National Natural
Science Foundation of China under Grant 61771333 and the
Tianjin Municipal Science and Technology Project under Grant
18ZXZNGX00330.

4526



6. References
[1] S. Zhang, S. Zhang, T. Huang, and W. Gao, “Speech emotion

recognition using deep convolutional neural network and discrim-
inant temporal pyramid matching,” IEEE Transactions on Multi-
media, vol. 20, no. 6, pp. 1576–1590, 2017.

[2] L. Guo, L. Wang, and J. Dang, “A feature fusion method based
on extreme learning machine for speech emotion recognition,”
ICASSP 2018, pp. 2666–2670, 2018.

[3] P. Zhou, X. Li, J. Li, and X. X. Jing, “Speech emotion recognition
based on mixed mfcc,” in Applied Mechanics and Materials, vol.
249, 2013, pp. 1252–1258.

[4] S. Lalitha, A. Mudupu, B. Nandyala, and R. Munagala, “Speech
emotion recognition using dwt,” in 2015 IEEE International Con-
ference on Computational Intelligence and Computing Research,
2015, pp. 1–4.

[5] K. Rao, S. Koolagudi, and R. Vempada, “Emotion recognition
from speech using global and local prosodic features,” Interna-
tional Journal of Speech Technology, vol. 16, pp. 143–160, 2013.

[6] Z. Yao, Z. Wang, W. Liu, Y. Liu, and J. Pan, “Speech emotion
recognition using fusion of three multi-task learning-based classi-
fiers: Hsf-dnn, ms-cnn and lld-rnn,” Speech Communication, vol.
120, pp. 11–19, 2020.

[7] B. T. Atmaja and M. Akagi, “The effect of silence feature
in dimensional speech emotion recognition,” arXiv preprint
arXiv:2003.01277, 2020.

[8] A. C.N, T. Iliou, and I. Giannoukos, “Features and classifiers for
emotion recognition from speech: a survey from 2000 to 2011,”
Artificial Intelligence Review, vol. 43, pp. 155–177, 2012.

[9] K. Han, D. Yu, and I. Tashev, “Speech emotion recognition using
deep neural network and extreme learning machine,” in Fifteenth
annual conference of the international speech communication as-
sociation, 2014.

[10] J. Lee and I. Ivan, “High-level feature representation using re-
current neural network for speech emotion recognition,” in Proc.
Interspeech, 2015, pp. 1537–1540.

[11] S. Mirsamadi, E. Barsoum, and C. Zhang, “Automatic speech
emotion recognition using recurrent neural networks with local
attention,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 2227–
2231.

[12] A. Satt, S. Rozenberg, and R. Hoory, “Efficient emotion recogni-
tion from speech using deep learning on spectrograms,” in Proc.
Interspeech, 2017, pp. 1089–1093.

[13] J. Liu, Z. Liu, L. Wang, L. Guo, and J. Dang, Time-Frequency
Deep Representation Learning for Speech Emotion Recognition
Integrating Self-attention, 2019.

[14] S. Sabour, N. Frosst, and G. Hinton, “Dynamic routing between
capsules,” in Advances in neural information processing systems,
2017, pp. 3856–3866.

[15] K. Duarte, Y. Rawat, and M. Shah, “Videocapsulenet: A simpli-
fied network for action detection,” in Advances in Neural Infor-
mation Processing Systems, 2018, pp. 7610–7619.

[16] B. Zhang, X. Xu, M. Yang, X. Chen, and Y. Ye, “Cross-domain
sentiment classification by capsule network with semantic rules,”
IEEE Access, vol. 6, pp. 1–1, 2018.

[17] Y. Min, M. Zhao, J. Ye, Z. Lei, Z. Z, and S. Zhang, “Investi-
gating capsule networks with dynamic routing for text classifica-
tion,” Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 3110–3119, 2018.

[18] J. Liu, Z. Liu, L. Wang, L. Guo, and J. Dang, “Speech emotion
recognition with local-global aware deep representation learning,”
in ICASSP 2020 - 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2020, pp. 7174–
7178.

[19] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE transactions on
neural networks, vol. 20, no. 1, pp. 61–80, 2008.

[20] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A sur-
vey,” IEEE Transactions on Knowledge and Data Engineering,
vol. PP, no. 99, pp. 1–1, 2020.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations (ICLR), 2017.

[22] C. Busso, M. Bulut, C. Lee, A. Kazemzadeh, and et.al., “Iemocap:
Interactive emotional dyadic motion capture database,” Language
resources and evaluation, vol. 42, p. 335, 2008.

[23] L. V. D. Maaten, “Learning a parametric embedding by preserving
local structure,” Journal of Machine Learning Research, vol. 5,
pp. 384–391, 2009.

4527


