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Abstract
In this study, we propose a scenario-dependent speaker diariza-
tion approach to handling the diversified scenarios of 11 do-
mains encountered in DIHARD-III challenge with a divide-and-
conquer strategy. First, using a ResNet-based audio domain
classifier, all domains in DIHARD-III challenge could be di-
vided into several scenarios by different impact factors, such as
background noise level, speaker number, and speaker overlap
ratio. In each scenario, different combinations of techniques
are designed, aiming at achieving the best performance in terms
of both diarization error rate (DER) and run-time efficiency. For
low signal-to-noise-ration (SNR) scenarios, speech enhance-
ment based on a progressive learning network with multiple in-
termediate SNR targets is adopted for pre-processing. Conven-
tional clustering-based speaker diarization is utilized to mainly
handle speech segments with non-overlapping speakers, while
separation-based or neural speaker diarization is used to cope
with the overlapping speech regions, which is combined with an
iterative fine-tuning strategy to boost the generalization ability.
We also explore post-processing to perform system fusion and
selection. For DIHARD-III challenge, our scenario-dependent
system won the first place among all submitted systems, and
significantly outperforms the state-of-the-art clustering-based
speaker diarization system, yielding relative DER reductions of
32.17% and 28.34% on development set and evaluation set on
Track 1, respectively.
Index Terms: speaker diarization, scenario-dependent process-
ing, speech separation, neural speaker diarization, speech en-
hancement

1. Introduction
Speaker diarization is the task of determining “who spoke
when” in the given audio signal [1, 2]. It can also act as the
pre-processing for automatic speech recognition (ASR) [3, 4]
in many realistic application domains.

The NIST Rich Transcription evaluation first focused on
the diarization performance on meeting speech [5]. The tradi-
tional speaker diarization system consists of several modules,
including speech activity detection (SAD), speech segmenta-
tion, speaker embedding extraction, and clustering. Because
there was no unified task, research on different single domains
such as telephone [6, 7], broadcast [8] and meeting [9] contin-
ued. This made it hard to compare performance, and when it
turned to other real-world challenging domains, such as restau-
rant and web videos, the performance degraded dramatically.

To attract researchers’ interest on more challenging do-
mains, DIHARD-I challenge [10] was held, bringing the dataset
drawn from a diverse range of domains. The difficulty for
the challenge comes from the variety of the scenarios and the

overlapping speech. And the traditional system performed
poorly [11, 12]. For the following DIHARD-II challenge [13],
Brno University of Technology (BUT) won the first place by
the fit-all-domain clustering-based speaker diarization system
[14]. The Gaussian Mixed Model (GMM) based speaker em-
bedding i-vector [15] is replaced by neural network based x-
vector [16] for the better performance. Two-stage cluster-
ing is performed with the first-stage agglomerative hierarchi-
cal clustering (AHC) [17] providing an initial under-clustering
result and the second-stage Variational Bayes Hidden Markov
Model (VB-HMM) [18] refining the initial result. Some teams
[19, 20] also tuned specific thresholds when clustering to per-
form domain-dependent processing.

The methods mentioned above are all based on unsuper-
vised clustering, which considers each frame contains at most
one speaker, so they can not deal with overlapping speech.
Even combined with the overlap detection and resegmentation,
the performance boost is small. In order to directly solve the
overlap problem and minimize the diarization errors, the neural
network-based speaker diarization, such as end-to-end neural
speaker diarization (EEND) [21, 22] and target-speaker voice
activity detection (TS-VAD) [23] were proposed. They judge
each speaker’s activeness for each frame, so they can funda-
mentally estimate multiple speakers at the same time. But the
limitation lies on the total number of speakers is fixed. Fur-
ther research was taken on handling unknown number of speak-
ers on EEND [24]. But it doesn’t work well when the num-
ber of speakers is higher than four. Besides, conformer-based
continuous speech separation (CSS) [25] was taken as the pre-
processing for the diarization to help to improve performance.

In this paper, we propose a novel scenario-dependent
speaker diarization pipeline for DIHARD-III challenge [26, 27].
Different from the domain-dependent approach that adjusts
suitable parameters for specific domain [19, 20], we com-
bine different techniques according to the scenarios grouped
based on the domain classification results. Not only scenario-
dependent processing can improve the diarization performance
more efficiently, but also it can reduce the risk of performance
degradation compared with adopting the same strategy on all the
scenarios. For overlapped scenarios, clustering-based speaker
diarization first provides the initial diarization results, then
separation-based or neural speaker diarization further estimates
the remaining speakers embedded in current speech. Besides,
speech enhancement is applied on specific noisy scenarios to
enhance the speech quality, and post-processing is performed to
further improve the overall performance. The DIHARD-III sys-
tem description [28] of our pipeline intuitively describes all the
technical details, so in this study we focus on explaining the mo-
tivation of scenario-dependent strategy and iterative fine-tuning
strategy, the details can refer to [28].
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Figure 1: The overall structure of our proposed pipeline for the DIHARD-III challenge.

2. Motivation

The main scenario impact factors for each domain on the full
development set of DIHARD-III challenge are listed in Table 1
to show how the domains differ from each other and how hard
the challenge is. Overlapping speech interferes with the diariza-
tion process, as we assign a frame with only one speaker dur-
ing clustering. And the overlap ratio can exactly represent the
proportion of overlapping speech time to total scored speaker
time. Besides, the speaker number can also reflect the diariza-
tion difficulty, because the more speakers embedded in one ses-
sion, the harder it is for the clustering to distinguish between
speakers. As observed in Table 1, the overlap ratio for most do-
mains is relatively low, among which AUDIOBOOKS has non
overlapping speech with only one speaker embedded in one ses-
sion. But in specific domains like MEETING, WEB VIDEO
and RESTAURANT, the overlapping speech is extremely fre-
quent with a wide range of speaker numbers. What’s more,
loud background noise existing in some domains like RESTAU-
RANT can also obscure speaker’s identity, accordingly degrade
the diarization performance. The diversified scenarios drive us
to develop different solutions specifically and efficiently, so the
scenario-dependent strategy is adopted.

Table 1: Summary of average overlap ratio (%) and speaker
number per session for each domain on full development set.

Domain Overlap Ratio (%) Speaker Number
AUDIOBOOKS 0.00 1
BROADCAST. 1.18 3-5
COURTROOM 1.90 5-10

MAP TASK 2.93 2
CLINICAL 4.55 2
SOC.LAB 4.78 2

SOC.FIELD 7.53 2-6
CTS 11.97 2

MEETING 22.43 3-7
WEB VIDEO 21.70 1-7

RESTAURANT 25.20 4-7

Figure 1 illustrates the overall structure of our proposed
scenario-dependent pipeline for the DIHARD-III challenge. It
consists of audio domain classification, speech enhancement,
clustering-based speaker diarization (CSD), neural speaker di-
arization (NSD), separation-based speaker diarization (SSD),
and post-processing. We will elaborate the details of each mod-
ule in the following section.

3. Proposed Scenario-Dependent Pipeline
3.1. Audio Domain Classification

We first adopt a residual neural network (ResNet) [29] with 17
convolutional layers to classify the diversified eleven domains.
All the following modules needed are performed based on the
results from audio domain classification. Each recording ses-
sion from the whole DIHARD corpus is assigned with a spe-
cific domain label predicted by the audio domain classification
module during testing, and then all the sessions belonging to
the same label are grouped together. Domains with similar sce-
narios are further grouped for the following processing.The ac-
curacy achieved on the leave-one-out cross validation develop-
ment set was 100%. The domain labels for the evaluation set
were released after the challenge, we directly evaluate our clas-
sification results and get an accuracy of 80.7% for the full eval-
uation set, and 64% of the errors come from the confusion be-
tween CLINICAL and SOCIOLINGUISTIC LAB data, which
both are two-speaker mixed domains with quite low overlap ra-
tios, so can be regarded as the same scenario.

3.2. Speech Enhancement

Many sessions contain background noise due to the complex
recording environments, among which all the sessions belong-
ing to the RESTAURANT domain have loud babble noise in
common, including background speech from neighboring ta-
bles (sometimes at levels close to that of the target speakers),
clinking silverware, moving chairs or tables, and loud music.
The existence of background noise interferes with the cluster-
ing process, contributes to the increasement of diarizing dif-
ficulty, so we perform speech enhancement on the RESTAU-
RANT data. For other domains, not all sessions are with per-
sistent low SNRs. Accordingly, speech enhancement is not
applied to reduce the risk of degrading the diarization perfor-
mance in high-SNR sessions. Here we employ the progressive
multi-target network based speech enhancement model in [30].
The enhanced speech can be recovered from each intermediate
layer by progressively enhanced log-power spectra (PELPS) or
progressively ratio mask (PRM) features, and we finally adopt
the speech recovered by PELPS from the first hidden layer to
achieve the best performance.

3.3. Clustering-Based Speaker Diarization

Here we directly refer to the clustering-based speaker diariza-
tion (CSD) system of BUT in DIHARD-II [14], which can be
regarded as the scenario-independent system treating each do-
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main equally, and has shown its poweful generalization ability
on different domains. The x-vectors are first extracted with a
time delay neural network (TDNN) [31] for each speech seg-
ment divided by SAD, and then clustered by means of AHC
with similarity metric based on probabilistic linear discriminant
analysis (PLDA) log-likelihood ratio scores [32], followed by
VB-HMM based clustering to create the diarization results.

3.4. Neural Speaker Diarization

The performance of CSD is good enough to deal with most of
the domains, but it can’t well handle overlapping speech. Here
we adopt neural speaker diarization (NSD) to cope with over-
lapped regions in multi-speaker mixed domains. TS-VAD can
predict the per-frame speech activities for all the speakers si-
multaneously, and we further improve the original TS-VAD.
Considering that the TS-VAD can only process sessions with
a fixed number of speakers, so we improve the TS-VAD to
accommodate the situation that the number of speakers varies
from session to session. Moreover, to improve the generaliza-
tion ability of TS-VAD for diversified mismatched domain data,
an iterative fine-tuning strategy is designed to optimize the cur-
rent session. The NSD using TS-VAD is built on CSD because
during the fine-tuning stage we first decode the TS-VAD pre-
trained model with i-vectors extracted from CSD results. More
details about iterative fine-tuning procedure and the strategy for
variable speakers can refer to [28].

3.5. Separation-Based Speaker Diarization

For the two-speaker mixed domains, we can apply separation-
based speaker diarization (SSD) as the first-stage overlapping
processing, followed by NSD as the second-stage overlapping
processing to achieve a better performance. We also combine
traditional speech separation and iterative fine-tuning strategy
together, the former separates the original mixed waveform into
two single-speaker streams using a fully convolutional time-
domain audio separation network (ConvTasNet) [33], and then
detects speaker presence using a DNN-based SAD, and the lat-
ter contributes to the generalization ability. The fine-tuning pro-
cedure is also taken based on CSD results, which first provides
the pre-trained model with the speaker priors to simulate two-
speaker conversational data. The more details about SSD with
iterative fine-tuning procedure can be found in [28].

3.6. Post-Processing

We first apply Dover-lap [34] on fusing different module results
mentioned above, including the results from CSD, different it-
eration results of different fine-tuning stages of NSD or SSD.
We then select the best result among different fusion and single
module results (as the fusion result is not always the best) based
on the performance of the development set, which is replayed
on the evaluation set. Finally, we detect the laughter segments
using the speech recognition information where multiple speak-
ers laugh at the same time but we only find out one speaker most
of the time. Here we artificially attach the neighborhood speak-
ers. Until now, we can get the final results in the form of Rich
Transcription Time Marked (RTTM) files.

3.7. Scenario-Dependent Processing

As shown in Table 1, for the non-overlapping scenario AUDIO-
BOOKS, each session consists of a single speaker, the data de-
tected just need to be segmented according to the SAD informa-
tion, and then all segments are assigned to the same speaker. We

ignore any subsequent clustering or separating process, which
can avoid unnecessary calculations.

For the overlapped scenarios, we perform CSD to deal with
the non-overlapped regions, it can also provide quite accurate
and abundant prior information to NSD to cope with overlap-
ping speech with the exception of scenarios with high overlap
ratios. The existence of the large number of overlapped regions
seriously interferes with the clustering process in CSD, mak-
ing the initial diarization results quite inaccurate. Accordingly
NSD leads to performance degradation due to the less accurate
priors, and the wrong assignment results in the error accumu-
lation during simulating data in the fine-tuning stage. But we
use AMI [35] corpus for TS-VAD model training, so TS-VAD
performs well on the approximately in-domain MEETING data.
Besides, we point out that all sessions of RESTAURANT data
contain loud noise, and speech enhancement can really improve
the speech quality and do good to diarization.

We perform SSD as the first-step overlapping speech pro-
cessing on CTS (Conversational Telephone Speech). CTS is
a telephone conversation domain consisting of two English
speakers per session. Due to the informal conversation contents
and non face-to-face form, quite a few overlapped speech are
embedded in each session. SSD can further significantly im-
prove the performance on the overlapped segments compared
with only using NSD overlapping processing.

All the domains go through the post-processing module in
the end except AUDIOBOOKS. The post-processing needs the
audio domain classification information as the fusion and selec-
tion are conducted in a domain-dependent manner.

4. Experiments and Result Analysis
4.1. Experimental Setup

For speech enhancement module, we employed a 3-layer long
short-term memory (LSTM) [36] network with 1024 cells in
each layer. The clean speech were from WSJ0, AIShell-1,
THCHS-30, and Librispeech. The noise included 115 types of
noise and MUSAN corpus. The total duration of the training set
was 1000 hour. For the NSD module, we adopted Switchboard-
2, AMI Meeting Corpus, Voxconverse dev set and simulated
data by Librispeech to train the TS-VAD pre-trained model,
totally 2500-hour data. And we simulated about 4-hour data
for each session during fine-tuning stage. For the SSD mod-
ule, the 250-hour 2-speaker simulated data using Librispeech
was adopted for the ConvTasNet pre-trained model. And 2 to
3-hour audios were simulated for each session for fine-tuning.
More details about the training data sources, the network struc-
ture for each sub-module, as well as the configuration of hyper-
parameters can be seen in [28]. Two partitions of the DIHARD-
III datasets are defined, that is, core dataset and full dataset, re-
spectively corresponding to the dataset with roughly the equal
duration and unbalanced duration on each domain. The diariza-
tion performance was assessed by the primary metric diarization
error rate (DER) in this paper, where DER (%) is the total per-
centage of reference speaker time that is not correctly attributed
to a speaker. And we only introduced the performance on Track
1 with oracle SAD here due to the lack of space.

4.2. Effect of Speech Enhancement

For the noisy scenario RESTAURANT, we apply speech en-
hancement (SE) first of all, then perform speaker diarization us-
ing CSD. The performance comparison can be obtained in Table
2. We achieve a significant DER reduction of 5.68% by denois-
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ing on the development set and 3.94% on the evaluation set.
The corresponding reduction on the evaluation set is slightly
less than that on the development set, partly due to the audio
domain classification errors.

Table 2: DER(%) performance comparison on full development
set and full evaluation set of RESTAURANT data among differ-
ent systems.

Domain CSD SE + CSD
Dev Eval Dev Eval

RESTAURANT 43.82 43.20 38.14 39.26

4.3. Effect of Scenario Categorization

For the remaining eight domains except AUDIOBOOKS and
WEB VIDEO, which don’t need overlapping processing for
avoiding unnecessary calculations and performance degrada-
tion, respectively, we use CSD to diarize the non-overlapped
speech segments, and NSD to diarize the overlapped speech re-
gions. As shown in Table 3, NSD has brought performance
improvement for all the domains on the development set, but
audio domain classification errors and scenario changes lead
to performance degradation, of which the domain classifica-
tion errors contribute to the mismatched technique combina-
tions on the single sessions and mismatched processing, and
the scenario changes including the obvious changes of overlap
ratios and SNR levels further interfere with the classification
results, so affect the performances of the first three domains of
BROADCAST INTERVIEW, COURTROOM and MAP TASK
on the evaluation set. For the next three domains, consistent
DER reductions have been achieved on both development and
evaluation sets. For the CTS domain, the ratio of the overlap-
ping speech increases when compared with the other former do-
mains according to Table 1. Therefore the improvement brought
by NSD is more significant, achieving an absolute reduction
of 5.48%, or a 33.8% relative reduction from the scenario-
independent CSD system on the development set. Owing to
the AMI training data, ND also brings a performance boost to
the MEETING domain with a high overlap ratio.

Table 3: DER(%) performance comparison on full development
set and full evaluation set of eight domains data among different
systems.

Domain CSD CSD + NSD
Dev Eval Dev Eval

BROADCAST. 2.60 4.22 2.37 4.46
COURTROOM 2.95 3.07 2.46 3.07

MAP TASK 5.02 3.41 2.27 3.20
CLINICAL 10.97 11.09 9.83 10.03
SOC.LAB 7.97 6.04 5.17 3.81

SOC.FIELD 11.87 8.05 10.74 7.10
CTS 16.22 14.19 10.74 9.71

MEETING 26.41 33.20 23.05 28.17

4.4. Factors Affecting SSD Performances

The CTS data occupies a quite large proportion of the full
dataset, so we pay more attention to this domain. We find that
further improvement can be achieved by using SSD first, the
performance is listed in Table 4. The telephone recording en-
vironment contains little noise, so SSD performs well on CTS
domain. But the performance improvement on the other two-
speaker mixed domains with some background noise brought

by SSD is limited. The SSD brings a DER reduction of 7.46%,
and NSD can further bring a 1% reduction, totally 52.2% rela-
tive reduction on the development set. DER also reduces from
10.74% to 7.76% compared with the combination of CSD and
NSD in Table 3. A huge reduction is also shown on the eval-
uation set. The performance improvement on CTS really con-
tributes to the significant improvement on the full data set.

Table 4: DER(%) performance comparison on full development
set and full evaluation set of CTS data among different systems.

Domain CSD CSD + SSD CSD + SSD + NSD
Dev Eval Dev Eval Dev Eval

CTS 16.22 14.19 8.76 7.85 7.76 7.03

4.5. Effect of Post-Processing

In post-processing, we also fuse CSD systems with different
AHC and VB-HMM thresholds for RESTAURANT and WEB
VIDEO domains. The best single-system results before post-
processing can be obtained in Table 2-4. And we get the final
results in Table 5. The scenario-independent system refers to
CSD, and the scenario-dependent system refers to our proposed
system after post-processing. Almost all of the domains yield
better results after post-processing, and we finally obtain the
DER of 11.07% on development set and 11.30% on the evalu-
ation set, with great relative reductions of 32.17% and 28.34%,
respectively, when compared with results obtained with the
powerful scenario-independent system.

Table 5: DER(%) performance comparison on full development
set and full evaluation set among different systems.

Domain Scenario-Independent Scenario-Dependent
Dev Eval Dev Eval

AUDIOBOOKS 2.37 0.43 0.00 0.00
BROADCAST. 2.60 4.22 2.15 4.18
COURTROOM 2.95 3.07 1.31 2.82

MAP TASK 5.02 3.41 1.35 1.58
CLINICAL 10.97 11.09 8.71 8.46
SOC.LAB 7.97 6.04 4.31 3.70

SOC.FIELD 11.87 8.05 9.40 6.45
CTS 16.22 14.19 7.50 6.55

MEETING 26.41 33.20 21.63 24.53
WEB VIDEO 35.02 37.30 33.25 34.33

RESTAURANT 43.82 43.20 37.85 38.29
Ave. 16.32 15.77 11.07 11.30

5. Conclusions
In this paper, we propose a scenario-dependent speaker diariza-
tion framework to deal with the diverse scenarios encountered
in DIHARD-III challenge. Results show that our proposed sys-
tem performs better than those obtained with the conventional
scenario-independent systems even with potential domain clas-
sification errors. Our system ranked first among all the submit-
ted systems, in both evaluation tracks and on both evaluation
data sets. In future work, we plan to pay more research atten-
tion to those scenarios with higher speech overlap ratios.
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