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Abstract
This paper studies a novel pre-training technique with unpaired
speech data, Speech2C, for encoder-decoder based automatic
speech recognition (ASR). Within a multi-task learning frame-
work, we introduce two pre-training tasks for the encoder-
decoder network using acoustic units, i.e., pseudo codes, de-
rived from an offline clustering model. One is to predict the
pseudo codes via masked language modeling in encoder out-
put, like HuBERT model, while the other lets the decoder
learn to reconstruct pseudo codes autoregressively instead of
generating textual scripts. In this way, the decoder learns
to reconstruct original speech information with codes before
learning to generate correct text. Comprehensive experiments
on the LibriSpeech corpus show that the proposed Speech2C
can relatively reduce the word error rate (WER) by 19.2%
over the method without decoder pre-training, and also out-
performs significantly the state-of-the-art wav2vec 2.0 and Hu-
BERT on fine-tuning subsets of 10h and 100h. We release our
code and model at https://github.com/microsoft/
SpeechT5/tree/main/Speech2C.
Index Terms: self-supervised speech pre-training, automatic
speech recognition, encoder-decoder pre-training.

1. Introduction
Self-supervised learning has been shown effective in natural
language processing (NLP), e.g., BERT [1] and BART [2],
where it makes use of a large amount of unlabeled data for pre-
training to improve the performance of downstream tasks, such
as automatic speech recognition (ASR) [3, 4, 5, 6, 7, 8].

By their training objectives, self-supervised methods can be
categorized into contrastive learning [9, 10, 11] and reconstruc-
tive learning [6, 12, 13]. In contrastive learning, CPC [9] uses a
probabilistic contrastive loss, which induces the latent space to
capture information and uses an autoregressive model to clas-
sify future frames from negative examples. Wav2vec [10] pre-
trains a simple multi-layer convolutional neural network opti-
mized via a noise contrastive binary classification task. In re-
constructive learning, APC [6] reconstructs the future frame
with a unidirectional encoder via learning meaningful, non-
specific, and transferable speech representations. HuBERT [12]
firstly generates pseudo labels from an offline clustering step,
and they are used as the target to calculate a BERT-like loss for
model training, which can be boosted by an iterative process.

However, many previous studies only pre-train the speech
encoder for various spoken downstream tasks, while the de-
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coder is not pre-trained for the end-to-end encoder-decoder
based ASR models, which usually rely heavily on a large
amount of transcribed audio data. Although there are some at-
tempts to pre-train a Transformer decoder for end-to-end ASR
model, they have to use additional unpaired text data [4, 14, 15].
Can we pre-train the ASR decoder with speech-only data?
There are two main challenges, (1) speech signals are contin-
uous and textual representations are discrete, and (2) the de-
coder is responsible for generating text which is very different
from conventional speech representation (e.g., waveform, log-
mel fbank feature, or hidden states).

To address this problem, we propose a speech to code
pre-trained model (Speech2C), trying to pre-train the encoder-
decoder model with speech-only data. Under the multi-task
learning framework, we employ two pre-training tasks for
encoder-decoder pre-training using speech-only data with the
acoustic units learned from an offline clustering model, aka
pseudo codes. The first task predicts the pseudo codes via
masked language modeling (MLM) in encoder output, like Hu-
BERT model. For the second one, the decoder of Speech2C
learns to reconstruct reduced pseudo codes autoregressively, in-
stead of generating real text transcription. Both codes and text
are discrete representations and contain semantic information
of the speech signal. According to our observation, a certain
amount of codes are highly correlated with the transcriptions,
which implies that the decoder can learn text prediction in our
pre-training framework.

We conduct massive experiments on the Librispeech dataset
to validate the proposed Speech2C. To the best of our knowl-
edge, this is the first work to pre-train an encoder-decoder
model for ASR with only speech-only data, and our proposed
Speech2C achieves a new state-of-the-art performance on the
test set of Librispeech.

2. Related Work
We consider our work most related to HuBERT [12], which
benefits from an offline clustering step to provide pseudo labels
for a BERT-like pre-training. The backbone of HuBERT in-
cludes a convolutional feature encoder and a Transformer con-
text encoder. During pre-training, HuBERT first uses k-means
to learn the initial quantizer that maps speech signals to discrete
labels, and performs BERT-style pre-training where the inputs
are masked speech signals and prediction targets are discrete la-
bels. Moreover, HuBERT allows refinement on the pseudo label
by further using the pre-trained model as the new quantizer to
train a new iteration of the model. However, HuBERT model
only pre-trains a speech encoder, leaving the decoder not pre-

Interspeech 2022
18-22 September 2022, Incheon, Korea

Copyright © 2022 ISCA 2658 10.21437/Interspeech.2022-10368



𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6

Masked Prediction Loss 
w/ cluster label

𝑧1 𝑧2 𝑧3<B> 𝑧4

𝑧1 𝑧2 𝑧3 𝑧4 𝑧7

Reconstruction Loss
w/ reduced cluster label

𝑧7

<E>
𝑧7

Repeated Labels

Encoder Pre-net

𝑥1 M 𝑥6M 𝑥7𝑥4M

Transformer Encoder

Encoder Post-net
Decoder Post-net

Decoder Pre-net

Transformer Decoder

Figure 1: The framework of our proposed Speech2C model, which is pre-trained with masked prediction loss and reconstruction loss
on unpaired speech data for end-to-end ASR. In this example, z4, z5 and z6 are from the same class and can be reduced to a single
label for the decoder. In the fine-tuning stage, we initialize the ASR model with pre-trained Speech2C by removing the encoder post-net
and the decoder pre-net/post-net, since they are trained to process pseudo codes.

trained for the encoder-decoder based tasks, such as end-to-end
ASR [16]. Based on HuBERT encoder, our proposed Speech2C
model can also pre-train a Transformer decoder with pseudo la-
bel from the clustering model. Besides, some research works
[17, 18] attempt to leverage pseudo codes to reconstruct audios,
but they are mainly designed for speech resynthesis and speech
to speech translation tasks.

In addition, an idea was explored to pre-train a decoder for
end-to-end ASR [4, 14, 15]. The authors in [4] employ a sin-
gle speaker text to speech (TTS) system to generate synthesized
speech from a large number of transcripts, and use the gener-
ated speech-text pairs to pre-train the decoder. In [14], unpaired
text data are used to pre-train the transformer decoder, which
is pre-trained as a conditional language model by construct-
ing empty or artificial states to replace the real encoder hidden
states. Leveraging large-scale unpaired speech and text data,
SpeechT5 [15] pre-trains a shared encoder-decoder model for
various spoken language tasks. However, all previous work still
utilize text data to pre-train a decoder for end-to-end ASR. In
contrast, Speech2C is the first work to pre-train a Transformer
decoder for ASR without text data.

3. Methods
In this section, we first illustrate our model architecture, based
on which, we present two pre-training tasks in our proposed
Speech2C, the masked prediction loss for the encoder and the
pseudo-code reconstruction loss for the decoder.

3.1. Model Architecture

The model architecture of the proposed Speech2C for pre-
training is composed of an encoder network that extracts la-
tent speech representations from raw acoustic inputs and learns
contextualized speech representations, and a decoder network
for autoregressively reconstructing the pseudo codes of corre-
sponding source speech. Both encoder network and decoder
network are boosted with relative positional encoding [19]. Fig-
ure 1 illustrates the framework of the proposed Speech2C.

The encoder network follows the HuBERT BASE architec-

ture, with an encoder pre-net, the Transformer encoder, an en-
coder post-net, as shown on the left panel of Figure 1. More
specifically, the encoder pre-net is a convolutional network for
pre-processing waveform, which is of seven 512-channel layers
with strides [5,2,2,2,2,2,2] and kernel widths [10,3,3,3,3,2,2].
The Transformer encoder contains 12 layers with model dimen-
sion 768, inner dimension 3072 and 12 attention heads. More-
over, the encoder-post network contains a projection layer and
a code embedding layer, which are utilized to convert hidden
states into pseudo codes.

The decoder network also contains a decoder pre-net, the
Transformer decoder, and a decoder post-net. The pre-net trans-
forms a code index into an embedding vector. The Transformer
decoder has a similar architecture to the Transformer encoder
except for the cross-attention and the masked self attention. Fi-
nally, the post-net transforms the hidden state into the probabil-
ity distribution of codes, normalized by the softmax function.

3.2. Self-Supervised Speech Pre-Training

The proposed pre-training learning method for Speech2C has
access to speech-only data. We introduce two pre-training tasks
to pre-train the encoder-decoder model, including masked pre-
diction loss for the encoder and reconstruction loss for the de-
coder.

3.2.1. Masked prediction loss

During pre-training, the encoder pre-net first generates a fea-
ture sequence x from waveform by down-sampling, then the
Transformer encoder consumes masked acoustic features x̃ and
output hidden states hL. Furthermore, the network including
encoder post-net is optimized to predict the discrete target se-
quence z, where each zt ∈ [C] is a C-class categorical variable.
The distribution over codewords is parameterized with:

pf (c|x̃, t) = exp(sim(hL
t W, ec)/τ)∑C

c′=1 exp(sim(hL
t W, ec′)/τ)

(1)

where W is a projection matrix, hL
t is the output hidden state

for step t and layer L, ec is the embedding for codeword c,
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sim(a, b) computes the cosine similarity between two vectors
and τ = 0.1 is used to scale the logit.

Specifically, x̃ comes from x by span mask strategies,
where 8% of timesteps are randomly selected as start indices,
and spans of 10 steps are masked. Based on the above distribu-
tion, we denote the cross-entropy loss computed over masked
timesteps as

Lmlm =
∑

t∈M
log pf (zt|x̃, t), (2)

where, M denotes the set of masked timesteps, and zt denotes
the frame-level target at timestep t from Z.

3.2.2. Pseudo-code reconstruction loss

In addition to masked prediction loss in the encoder, we also de-
sign a reconstruction loss to pre-train the Transformer decoder.
Following the denoising autoencoder in BART [2], the decoder
network is optimized to generate the reduced pseudo codes with
the maximum likelihood estimation as

Lmle =
N∑

n=1

log p(zn|z<n, x̃), (3)

where N is the length of pseudo codes.
Pseudo codes are similar to real texts because (1) they are

discrete representations and have fixed vocabulary; (2) they all
have rich semantic information that can be aligned to speech
fragments. Hence, we believe this pre-training method on
pseudo codes can help the decoder learn how to generate text
sequences. The pseudo codes of adjacent speech frames have
some repeated codes, which may represent similar semantic
information, but repeated words are rarely used consecutively
in textual languages. To reduce the gap between pseudo code
and real text, we remove the repeating code of adjacent speech
frame, which will be studied in the ablation study.

4. Experiments
4.1. Training Details

All models are implemented in Fairseq1 [20]. For speech pre-
training, we use the full 960 hours of LibriSpeech [21] audio
without transcription. We optimize the model with Adam [22]
by warming up the learning rate for the first 8% of updates to
a peak of 2 × 10−4, which is linearly decayed for the follow-
ing updates. We pre-train the proposed Speech2C model on 32
V100 GPUs with a batch size of around 87.5s samples per GPU
for 400k steps.

For the fine-tuning, we employ 10 hours and 100 hours
as the supervised paired corpus, and use the character set as
the model units for the text. Because pseudo codes and tex-
tual characters have different vocabulary, we initialize the ASR
model with pre-trained Speech2C without the encoder post-net
and decoder pre-net/post-net, which are trained from scratch in
our fine-tuning model. We utilize the CTC and cross-entropy
loss to fine-tune the model [23], where the loss weights are 0.5
for both of them. The models are trained on 16 v100 GPUs
with a batch size of 100s samples per GPU. The learning rate
is warmed up for the first 10% steps, held as a constant for the
following 40% steps, and is decayed linearly for the rest steps.
For the 10/100 hours subset, we train the model with a learning

1https://github.com/pytorch/fairseq

Table 1: WER on the LibriSpeech test sets when training on
the 10 hours and 100 hours subset. † indicates that the results
are not reported in [12] and obtained by fine-tuning the pulic
released model.

Model LM test-clean test-other

10 hours subset
wav2vec2.0 BASE [11] None 11.1 17.6
HuBERT BASE † [12] None 10.1 16.8
Our Speech2C None 7.8 13.1

wav2vec2.0 BASE [11] 4-gram 4.3 9.5
wav2vec2.0 BASE [11] Transf 3.2 7.8
HuBERT BASE [12] 4-gram 4.3 9.4
Our Speech2C Transf 3.1 7.0

100 hours subset
wav2vec2.0 BASE [11] None 6.1 13.3
wav2vec2.0 LARGE [11] None 4.7 9.0
HuBERT BASE † [12] None 6.3 13.2
SpeechT5 [15] None 4.4 10.4
Baseline None 5.0 11.9
Our Speech2C None 4.3 9.0

wav2vec2.0 BASE [11] 4-gram 3.4 8.0
wav2vec2.0 BASE [11] Transf 2.6 6.3
HuBERT BASE [12] 4-gram 3.4 8.1
SpeechT5 [15] Transf 2.4 5.8
Baseline Transf 2.5 6.3
Our Speech2C Transf 2.4 5.2

rate of 2e-5/4e-5 for 25k/80k, and fix the encoder part for the
first 10k/25k steps.

For ASR inference, we apply the joint CTC/attention de-
coding [24] and train a transformer language model (LM) by
LibriSpeech-LM Corpus with the same architecture as in [15]
for the shallow fusion [25] to boost the performance of our base-
line and Speech2C. We sweep over the weights of the language
model and CTC from 0 to 1 on the dev-other subset and choose
the best weights according to the WER.

4.2. Main Results

The results of ASR on the 10 hours and 100 hours set of
LibriSpeech are reported in Table 1. The WER is evaluated
on the standard Librispech test-clean/other sets. We compare
with several state-of-the-art self-supervised approaches, includ-
ing encoder-based wav2vec 2.0 [11] and HuBERT [12], and
encoder-decoder based SpeechT5 [15], which utilizes the un-
paired speech and text corpus to pre-train. We build a strong
encoder-decoder based ASR baseline system, which has the
same model structure as our Speech2C, while the weights of
the encoder are initialized by the HuBERT BASE model.

Without LM fusion, the baseline outperforms wav2vec
2.0 BASE and HuBERT BASE with the help of the joint
CTC/attention decoding, which shows the importance of the de-
coder. Our proposed Speech2C model achieves significant im-
provements on all settings compared to wav2vec 2.0 BASE, Hu-
BERT BASE, SpeechT5 [15] and our strong baselines, demon-
strating the superiority of the proposed pre-training method.
More specifically, our Speech2C without LM gets a relative
19.2% WER reduction on the average of all sets compared to the
baseline system for 100h subset, which achieves state-of-the-
art performance. Furthermore, when decoding with LM shal-
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low fusion, our Speech2C still obtains the lower WERs than the
strong baseline on all sets.

4.3. Ablation Study

We present a series of ablation studies in the following sec-
tions to learn how code reduction, continuing pre-training, and
model layer numbers affect performance. The models for abla-
tion studies are pre-trained on 960 hours and fine-tuned on the
100-hour subset using fixed hyperparameters.

4.3.1. Effect of code reduction

Here, we start with probing the effectiveness of the k-means
clustering algorithm concerning code reduction. In Table 2, we
summarize the results of Speech2C with repeated pseudo codes
when calculating reconstruction loss, and the Speech2C with
repeated codes performs slightly worse than Speech2C with re-
duced codes. Moreover, reducing repeated codes has the fol-
lowing advantages: (1) the average length of reduced codes is
significantly shorter than that of repeated codes, which will ac-
celerate the training progress of Speech2C; (2) removing re-
peated codes does not loss semantic information, and brings
pseudo codes closer to the text.

Table 2: Comparison of Speech2C with repeated codes or re-
duced codes in terms of average length and WER.

Model Length test-clean test-other

Speech2C (repeated) 358 4.4 9.4
Speech2C (reduced) 216 4.3 9.0

4.3.2. Continued pre-training from released model

In addition to pre-train Speech2C from scratch, our method can
also support continually pre-train from a pre-trained speech en-
coder model, such as pre-trained HuBERT. Table 3 shows the
experimental results of two pre-trained Speech2C. Although
two pre-training methods achieve comparable performance, ini-
tializing the encoder of Speech2C with HuBERT can speed up
the convergence and reduce the training time.

Table 3: WER scores of Speech2C trained from scratch or ini-
tialized by HuBERT encoder.

Model test-clean test-other

Speech2C (from scratch) 4.3 9.0
Speech2C (from HuBERT) 4.1 9.1

4.3.3. Effect of layer numbers

Compared to wav2vec and HuBERT which adopt CTC infer-
ence based on speech encoder, the encoder-decoder based ASR
(eg., SpeechT5 and Speech2C) adds an external decoder to gen-
erate text. To reduce the influence of model parameters, we re-
duce the model layers of encoder-decoder model to the similar
parameters of encoder model. As shown in table 4, we list the
experimental results of Speech2C with different encoder and
decoder layers. We change the default setting of 12 encoder
layers and 6 decoder layers to the total same layer number of
wav2vec2.0 BASE and HuBERT BASE, such as 10 encoder lay-
ers and 2 decoder layers. Results show that although reducing
the model layers degrade the performance of Speech2C, it still
behaves better than encoder based ASR model.

Table 4: WER scores of Speech2C with different layer numbers.

Model Size Layer (enc-dec) test-clean test-other

wav2vec2.0 95M 12-0 6.1 13.3
HuBERT 95M 12-0 6.3 13.2
SpeechT5 154M 12-6 4.4 10.4

Speech2C 104M 8-4 4.9 10.9
Speech2C 100M 10-2 4.6 9.8
Speech2C 152M 12-6 4.3 9.0

4.4. Analysis

In this section, we want to answer a question: why pre-train
the decoder with pseudo code can help text generation in ASR?
Frames of the same phonemes are more likely labeled as similar
sequences of pseudo codes. We give an example chosen from
the LibriSpeech dataset to show the high relevance of pseudo
codes to text data and the patterns inherent in them. As shown
in Figure 2, the codes corresponding to “wonder” in different
samples are also similar and have an obvious pattern, which
demonstrates that pseudo codes can be regarded as an interme-
diary language between waveform and transcription.

Figure 2: The transcripts, pseudo codes and Mel-Spectrum from
two sentences, where the white boxes and the bold pseudo codes
corresponding to the subword ”wonder”.

5. Conclusion
This paper proposes a novel model, Speech2C, to pre-train an
encoder-decoder model with speech-only data. We present two
pre-training tasks including masked prediction task and recon-
struction task by taking advantage of acoustic units, i.e. pseudo
codes derived from an offline clustering model. Massive ex-
periments and analyses on the LibriSpeech dataset show the ef-
fectiveness and superiority of our proposed Speech2C. To the
best of our knowledge, Speech2C is the first work to pre-train
an encoder-decoder based ASR model with speech-only data.
For future work, we will pre-train a multilingual Speech2C to
address cross-lingual tasks, such as speech translation.
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