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Abstract
Federated Learning (FL) enables training state-of-the-art Au-
tomatic Speech Recognition (ASR) models on user devices
(clients) in distributed systems, hence preventing transmission
of raw user data to a central server. A key challenge facing
practical adoption of FL for ASR is obtaining ground-truth la-
bels on the clients. Existing approaches rely on clients to man-
ually transcribe their speech, which is impractical for obtaining
large training corpora. A promising alternative is using semi-
/self-supervised learning approaches to leverage unlabelled user
data. To this end, we propose FEDNST, a novel method for
training distributed ASR models using private and unlabelled
user data. We explore various facets of FEDNST, such as train-
ing models with different proportions of labelled and unlabelled
data, and evaluate the proposed approach on 1173 simulated
clients. Evaluating FEDNST on LibriSpeech, where 960 hours
of speech data is split equally into server (labelled) and client
(unlabelled) data, showed a 22.5% relative word error rate
reduction (WERR) over a supervised baseline trained only on
server data.
Index Terms: Federated Learning, Speech Recognition, Semi-
supervised Learning, Self-training.

1. Introduction
Significant improvements in Automatic Speech Recognition
(ASR) have been achieved through the development of End-
to-End (E2E) Attention-based models [1, 2] and semi/self-
supervised learning [3, 4], allowing for utilization of ever-
increasing training corpora. Acquiring speech data for applica-
tions such as voice assistants requires transferring sensitive user
data to the cloud, leading to privacy compromises [5, 6, 7, 8].
Federated Learning (FL) [9, 10] offers a solution by training
models on user devices (clients) without sharing private data
with the server. Briefly, an FL algorithm involves: (1) selecting
a group of clients, (2) transmitting a global model to clients,
(3) training the global model on local user data, (4) transmit-
ting gradients/weights back to the server, (5) aggregating gra-
dients/weights, and (6) repeating steps 1-5 until convergence.

Various Federated ASR methods have been proposed to
train ASR models in FL systems [11, 12, 13, 14]. Specific chal-
lenges arising from data heterogeneity (speech characteristics,
amount of data, acoustic environments etc.) are addressed via
client-dependent data transformations [14] and imposing upper
limits on the number of client samples [13]. Improvements to
distributed optimization of models, such as alternative aggrega-
tion weighting schemes based on Word Error Rate (WER) [12]
and hierarchical gradients [11] have also been proposed. A real-
istic setup for Federated ASR is presented in [12], showing fea-
sibility with the French and Italian CommonVoice subsets [15],
comprising of thousands of challenging speakers. The above
approaches all assume availability of labelled data on clients
participating in FL. In real-world ASR applications, however,
manual annotation of user data on the clients is infeasible.

Recent semi- and self-supervised central training methods
achieve state-of-the-art (SotA) accuracy, but require storing data
at a central location [16, 2, 17]. A natural question then arises:
can we adopt vanilla methods to leverage unlabelled user data
for federated training of ASR models?

Semi-/self-supervised learning methods have been explored
in FL systems for image and audio classification tasks [18, 19,
20, 21, 22]. However, these methods cannot be directly applied
to tackle the above problem, since the proposed objectives are
not applicable for sequence-to-sequence learning.

A semi-supervised FL method proposed for ASR [23] in-
volves uploading unlabelled speech data from clients to cloud
storage. An ASR model is then trained on this data using a
federation of a few model trainers with high computational re-
sources. The proposed approach is effective in a cross-silo
setup, but it is not applicable to a cross-device setup – a fed-
eration of thousands of user devices with low computational re-
sources.

To this end, we propose a new method called Feder-
ated Noisy Student Training (FEDNST), leveraging unlabelled
speech data from clients to improve ASR models by adapting
Noisy Student Training (NST) [24] for FL. Our work explores
a challenging scenario: each client holds and trains a model
exclusively on its own unlabelled speech data, leading to a het-
erogeneous data distribution, and, more than a thousand clients
participate in FL, resulting in a cross-device scenario.

The contributions of this work are as follows:

• To our best knowledge, this is the first work which aims to
leverage private unlabelled speech data distributed amongst
thousands of clients to improve accuracy of end-to-end ASR
models in FL systems. For this purpose, we propose a new
method called FEDNST, employing noisy student training for
federated ASR models, which achieves 22.5% WERR over
training with only labelled data.

• We elucidate the change in WER of ASR models from cen-
tral training to cross-device Federated Learning regimes with
FEDNST, achieving a marginal 2.2% relative difference
from fully-centralized NST in a comparable setup.

2. Background
End-to-End (E2E) ASR can be viewed as translating a se-
quence of input audio frames x = (x1, . . . , xT ), into a se-
quence of corresponding labels y = (y1, . . . , yL).

Modern E2E ASR models consist of an encoder-decoder
architecture, trained using a weighted sum of the sequence-to-
sequence (Seq2Seq) [25] objectiveLSeq2Seq and the Connection-
ist Temporal Classification (CTC) [26] objective LCTC:

L = νLCTC + (1− ν)LSeq2Seq (1)

where ν ∈ [0, 1]. While the CTC objective helps with conver-
gence during the early stages of training and is more robust to
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Algorithm 1 FEDNSTFEDNSTFEDNST
S indicates a server variable and C indicates a client variable.

Input: θ0, CLIENTOPTC,S , SERVEROPT, ηC,S , η, T , E
for each client i ∈ C in parallel do

PSEUDOLABEL(θ0) ▷ generates Di
Û

for t = 0, . . . , T − 1 do
ηt
C = ηt−1

C µt/λ ▷ Init. η−1
C = ηC

Sample a subset St ⊆ C of clients
for each client i ∈ St in parallel do

θti = θt, η
t
i = ηt

C ▷ receive θt, η
t
C from server

Retrieve: Di
Û

for e = 0, . . . , E − 1 do
for b ∈ Bi ∼ Di

Û
do

gi = ∇Li(θ
t
i ; b)

θti = CLIENTOPTC(θ
t
i , gi, η

t
i , e|Bi|+ b)

∆t
i = θti − θt, ni = |Di

Û
| ▷ send ∆t

i , ni to server

n =
∑

i∈St
ni

∆t
C =

∑
i∈S

ni
n
∆t

i

θtS = θt
for b ∈ BS ∼ DL do

gS = ∇LS(θ
t
S ; b)

θtS = CLIENTOPTS(θ
t
S , gS , ηS , b)

∆t
S = θtS − θt

∆t = α∆t
S + (1− α)∆t

C

θt+1 = SERVEROPT(xt,−∆t, η, t)

noisy conditions, the attention-based Seq2Seq objective helps in
understanding long-range dependencies [27]. Recent advance-
ments in E2E ASR models introduce self-attention to better cap-
ture intra-sequence relationships [1].

Noisy Student Training (NST) for ASR, a semi-
supervised learning algorithm originally proposed for image
classification [24], has been recently shown to significantly im-
prove ASR performance [4]. Briefly, NST [4] involves: (1)
training an initial model θ0 on a labelled dataset DL; (2) inte-
grating θ0 with a language model; (3) generating pseudo-labels
for an unlabelled dataset DU with θ0 (here data filtering and
balancing may be applied); (4) training θ0 on a mix of DL and
DU to generate θ1; (5) repeating steps 1-4 until convergence.

3. Proposed Approach
Federated Noisy Student Training (FEDNST) considers a sce-
nario where a corpus of labeled dataDL is available on a central
server. Each client i ∈ C, where C is the set of all clients, has
an unlabelled speech dataset Di

U . The aim of FEDNST is then
to leverage the unlabelled datasets Di

U , ∀i ∈ C, to improve ac-
curacy of an ASR model trained on DL while preserving user
privacy, i.e., without sending user data to the server.

3.1. Federated Noisy Student Training
Algorithm 1 describes training models using FEDNST which
requires an initial ASR model trained using some labelled data.
This requirement is supported by several studies [28, 29, 12]
which discuss the complexity of training modern SotA archi-
tectures from scratch with FL.

Thus, following the standard training procedure described
in Section 2, a baseline ASR model is first trained on a central
server usingDL to produce θ0. Next, the model θ0 is transferred
to all clients C. The clients use θ0 to pseudo-label their dataDi

U

via PSEUDOLABEL (Algorithm 2). A language model (LM) ϕ

Algorithm 2 PSEUDOLABELPSEUDOLABELPSEUDOLABEL(θ) - for every client i ∈ C.

Input from server: θ
Retrieve: ϕ, Di

U

Initialize: Di
Û
= ∅

for j = 1, 2, . . . , |Di
U | do

ŷi
j = f(xi

j ; θ;ϕ)

Di
Û
← (xi

j , ŷ
i
j)

Store Di
Û

on client i for future retrieval

is integrated into the ASR model and a beam search [30] is used
to improve the quality of the transcripts.

Once all clients C have pseudo-labelled their data, at each
FL training round t, the server transfers it’s latest model θt to
a randomly sampled fraction of clients St ⊆ C. Next, each
client i ∈ St trains on their pseudo-labelled data, generating a
new model, θi (see Algorithm 1). The updated models are then
transferred back to the server and aggregated to generate a new
global model θt+1. This process is repeated for T rounds or
until convergence. The optimization procedure is described in
detail in Section 3.2 and summarized in Algorithm 1.

We explore design choices for FEDNST which balance
model performance and training cost on two fronts: when to
pseudo-label and whether to re-use labelled server data.

First, instead of sending the model θ0 to all clients C at
the beginning to perform PSEUDOLABEL, we propose an al-
ternative strategy: at every round t, the participating clients St
perform pseudo-labelling using the latest global model, θt.

Secondly, the standard NST [4] procedure described in
Section 2 involves mixing samples from the labelled and
pseudo-labelled datasets for each training step. However, in su-
pervised FL, it is common to start with a model pre-trained on
the server with some labelled data, and during the FL process to
only use client data for model updates [11, 12]. In this work, we
perform an empirical study to determine the optimal strategies
for data mixing with FEDNST– only aggregating client updates,
or also incorporating the supervised data on the server, which
was used for pre-training θ0.

3.2. Federated Optimization for FEDNST
The optimization procedure described in Algorithm 1, adopts
the notation introduced in [31]. L(·) denotes the ASR loss
defined in (1). We define two optimizers [31], CLIENTOPT
and SERVEROPT, which are used on the clients and on the
server, respectively. Each performs a single step of gradi-
ent descent based on the weights θ, gradients g (or pseudo-
gradients−∆), learning rate η and optimization step-count. All
clients individually train on their own pseudo-labelled data us-
ing CLIENTOPTC without sending this data to the server. The
optimizer CLIENTOPTS is used to train on the labelled data
which exists on the server.

For each round t in FL, the same model θt is updated in
parallel on both the server and on a set of randomly sampled
clients St. The resulting weights difference ∆t

i = θti − θt is up-
loaded to the server by each participating client i after their local
training for E epochs. This is aggregated by the server to give
∆t

C . Similarly, a weights difference ∆t
S is produced after server

training. The hyper-parameter α performs a weighted average
of ∆t

C and ∆t
S to produce pseudo-gradients −∆t. Next, −∆t

is passed to SERVEROPT to produce a set of weights for the next
round θt+1. This process is repeated for a pre-determined num-
ber of rounds, T , or until convergence of models as measured
via WER on a validation set located on the server.

1002



4. Methodology
Evaluation Datasets: We evaluate our proposed method on
the LibriSpeech (LS) dataset [32]. Following the setup de-
scribed in [11], we divide the dataset into two equal subsets,
A and B, each comprising 480h. The two sets are disjoint, such
that all data arising from a single speaker is assigned to only
one set.

In the experimental analyses, we explore two scenarios:
1. Set A is used only for initial model pre-training, i.e., an FL

step is performed using only set B (no data mixing).
2. Set A is mixed with B during federated training of models

as discussed in Algorithm 1.
Experimental Setup: We use an end-to-end ASR model ar-
chitecture [33] with a Conformer (S) encoder [1], a transformer
decoder and a joint CTC+Seq2Seq objective. For Algorithm 1,
we set T = 1000, E = 1, ηC,S = 0.1, η = 1.0, α = 0.5 and
|St|
|C| = 7%. We set an equivalent number of epochs for the cen-

tralized experiments. After training, the model with the lowest
WER on the dev-clean is selected. Results reported on the dev-
clean, test-clean and test-other sets of LS are obtained by fus-
ing the ASR model with an off-the-shelf language model [33]
and using a beam search of size 10. For the federated experi-
ments, we use a FL simulation platform with design character-
istics similar to those described in [11].
Batch Normalization for FEDNST: As reported in other
works [34, 35, 36], we find that using standard Batch Normal-
ization (BN) for FL gives rise to convergence issues due to data
heterogeneity. To address this issue, we replace all BN layers
with a modified version of static Batch Normalization (sBN)
[35]. sBN does not keep track of running statistics, i.e., the
moving-average mean and variance associated with BN layers,
during FL training. At the end of FL training, it queries all
clients sequentially to produce global BN statistics which can
then be used to evaluate the trained model. This post-processing
step has computational and privacy concerns [35] and it makes
it difficult to perform model evaluation during training.

Our modification is to simply re-use the running statistics
from θ0 – the model trained using the supervised data corpus
DL located at the server. The behaviour of our modified sBN
layers during FL training is the same as original BN: normal-
ization using batch mean and variance, followed by re-scale
and shift using the trainable parameters γ and β. However, it
is worth noting that this approach assumes that the client and
server data arise from the same data distribution i.e. we expect
running statistics before and after FL to be the same.
Federated Optimization in FedNST: Using the FEDOPT for-
mulation for federated optimization [31], we examined the
use of adaptive (FEDAVGM and FEDADAM) and standard
(FEDAVG [10]) server-side optimizers for FL. We found that
the differences in accuracy between these optimizers were lim-
ited (results not shown due to limited space), and hence choose
the computationally more efficient FEDAVG in our study.

For the client-side optimizer, our default configuration [33]
uses Adam to train the model. Our experiments indicate that
using Adam as a local optimizer performs worse than using
SGD because a cross-device FL system expects stateless clients,
whereas Adam has stateful parameters. This was also found to
be the case in [11]. Thus, we use the SGD optimizer for clients.
We set α defined in Algorithm 1 to 0.5 for all experiments as
we found this to be the best value.
Learning Rate (LR) Decay for Clients in FedNST: When data
is distributed across clients (e.g. one client per speaker), such a
dataset is considered to be non-iid. Li et al. [37] reported that
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Figure 1: WER of models on the dev-clean (greedy search and
no LM) (left) and client LR (right) for various λ values. Plot
on the left is smoothed using exponential moving average with
weight 0.8 and only the last 750 rounds are shown. Plot on the
right is logarithmically scaled along the y-axis.

the LR of federated optimizers must decay to guarantee conver-
gence when training with non-iid data. Thus, we use LR decay
to seek a better global minima in the analyses. Among various
LR reduction methods [38], we choose to only decay the client
LR ηt

C at the start of each round t and keep it fixed for local
training. We use exponential decay as described in Algorithm
1 where the LR ηt

C is shared amongst participating clients St,
and updated at each round. We experimented with various val-
ues for µ (decay rate) and λ (decay steps) defining the LR decay
curve. Training curves used for selecting a suitable value of λ
are shown in Figure 1. We found λ = 1000 to perform the best,
and used this for all subsequent experiments. Therefore, for our
setup, using a weak decay is more effective than strong decay.

Table 1: Description of data splits used for experiments.

Split Hrs Num. Spks Supervision Location

A 480 1165 Labelled Server
B 480 1173 Unlabelled Clients

5. Experimental Analyses and Results
5.1. Comparison with SotA Methods

In Table 2, we compare WER of models trained using central-
ized supervised learning (SL), supervised Federated Learning
(SFL), NST, and our proposed FEDNST.

The results given in the first row (indicated by SLseed) are
obtained through training models on A (labelled). The results
given in the second row (indicated by SL) are obtained by train-
ing models on A ∪ B (both labelled). Here, SL is the lower-
bound or best possible WER. We present 2.59 % WER on test-
clean with 960h of labelled data which is close to SotA for a
comparable sized model [1]. The last three rows present, NST,
SFL and FEDNST, trained over a combination of A and B,
starting from the pre-trained model SLseed. All FEDNST exper-
iments use SLseed as θ0 from Table 2 unless stated otherwise.
For simplicity, in our study, both NST and FEDNST models are
trained for a single generation and without any data filtering or
balancing methods defined in [4].

FEDNST achieves comparable WER over NST (2.2% rel-
ative difference for test-clean), without the need of sending user
data to a central server. We further observe a relative WER in-
crease of 8.5% when comparing SFL with FEDNST. This is
still smaller than the 22.5% relative WER reduction achieved
by FEDNST over SLseed. These results provide strong motiva-
tions to use FEDNST in a real-world scenario.
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Table 2: Comparison of WER (%) of models trained under dif-
ferent labelled data regimes.

Method L U test-clean test-other

SLseed A ∅ 4.27 8.99
SL A ∪ B ∅ 2.59 6.30
NST A B 3.24 7.96

SFL A ∪ B ∅ 3.05 7.57
FEDNST A B 3.31 8.07

Table 3: An analysis of the relationship between the duration of
labelled data |A| in hours and WER (%) of models.

|A| SLseed FEDNST

test-clean test-other test-clean test-other

120 9.44 18.0 7.89 15.9
240 6.96 12.9 5.30 12.0
360 5.52 11.0 4.69 10.0
480 4.27 8.99 3.31 8.07

5.2. Analyses with Different Pseudo-Labelled Data
Regimes

Intuitively, models trained with fully supervised data perform
better than those trained with self-training methods (e.g. NST)
on partially labelled data. This is due to the noise induced by
inaccurately predicted labels. We explore how changing the
proportion of labelled and pseudo-labelled data affects model
performance. The purpose is to: (1) quantify the hypothetical
gain in performance if ground-truth labels were available for all
clients, and (2) empirically verify ifA is useful during federated
training. The results are depicted in Figure 2.

Figure 2 presents two analyses: Figure 2 (i) varies the per-
centage of clients with entirely labelled data against clients
which pseudo-label their data (i.e., applying Algorithm 2). Fig-
ure 2 (ii) varies percentage of labelled samples per client, i.e.,
ratio of samples with ground-truth against samples that are
pseudo-labelled for each client. Each plot in Figure 2 presents
two sets of graphs showing results from test-clean and test-
other, respectively. Within each set, graphs representing A ∪ B
(blue) and B (red) show the impact of dataset mixing in FL.
Percentage of labelled clients and labelled samples per client is
thereafter referred to as ‘x%-labelled’ for brevity.

Figures 2 (i) and (ii) show similar trends, since in both cases
the cumulative hours of labelled vs. unlabelled data obtained
from all clients are roughly the same. With reference to (1), we
find that 0%-labelled leads to a relative WER increase of 8.5%
compared to 100%-labelled for the A ∪ B setup. With refer-
ence to (2), training models with FedNST using only B does
not cause significant catastrophic forgetting. Instead, the model
retains its ability to further learn from new data. We find that
when using 0%-labelled, re-using A (i.e., data-mixing), pro-
duces 0.5 WER improvement. However, this improvement re-
duces to nearly 0 when at least 25% of the data is labelled.

We hypothesize that the benefits seen with A ∪ B at 0%-
labelled come from A acting as a form of regularisation when
most of the client data is pseudo-labelled. Exploring contin-
ual learning techniques for this problem is a promising future
direction. It is worth noting the surprisingly small difference
in WER seen with and without mixing labelled and unlabelled
data – this is likely due to the nature of LS rather than a general
observation for ASR datasets (as discussed in [11, 12]).
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Figure 2: Reduction of WER as the percentage of labelled
clients (i) or samples per client (ii) increases. Relative WER
increases from labelled (100%) to pseudo-labelled (0%) data
regime.

5.3. Analyses with Different Labelled Data Regimes

We explore the effect of changing the amount of labelled data
A to produce SLseed and further with pseudo-labelled B with
FEDNST in Table 3. We used |A| ∈ {120, 240, 360, 480}
hours and |B| = 480 hours for all experiments. As expected,
decreasing available labelled data for pre-training shows higher
WER compared to FEDNST results in Table 2. Table 3 also
points to a clear correlation between the WER of the initial pre-
trained model and that of FEDNST.

5.4. Analyses with Varying Pseudo-Labelling Frequency

We ran an experiment to test our alternative pseudo-labelling
strategy in which PSEUDOLABEL is performed every round t
for clients St. We provide the results in Table 4. Although
this strategy performs very similarly to our original approach
in terms of WER, the pseudo-labelling step is highly compu-
tationally expensive, increasing the overall FL experiment time
by 10x. We leave optimizing on this front as future work.

Table 4: Comparison of pseudo-labelling strategies, using la-
belled A and pseudo-labelled B for 50 rounds.

Labelling test-clean test-other Wall-clock/FL Round (Mins)

Once 3.31 8.07 1.74
Every round 3.34 8.29 18.6

6. Conclusions
We have proposed a new method called FEDNST for semi-
supervised training of ASR models in FL systems. FEDNST
performs noisy student training to leverage private unlabelled
user data and improves the accuracy of models in low-labelled
data regimes using FL. Evaluating FEDNST on real-world ASR
use-cases using the LibriSpeech dataset with over 1000 simu-
lated FL clients showed 22.5% relative WERR over a super-
vised baseline trained only with labelled data available at the
server. Our analyses showed that FEDNST achieves a WER
comparable to fully centralized NST and to supervised train-
ing while incurring no extra communication overhead com-
pared to FEDAVG. In the future, we plan to employ FEDNST
on more challenging datasets, e.g., CommonVoice [15], and to
incorporate other methods to learn from unlabelled data, such
as Wav2Vec2.0 [17].
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