Robust Cough Feature Extraction and Classification Method for COVID-19
Cough Detection Based on Vocalization Characteristics

Xueshuai Zhang1,2,§, Jiakun Shen1,2,§, Jun Zhou1,2, Pengyuan Zhang1,2, Yonghong Yan1,2,†, Zhihua Huang3, Yanfen Tang4, Yu Wang4, Fujie Zhang4, Shaoxing Zhang5, Aijun Sun6

1Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China
3School of Information Science and Engineering, Xinjiang University, China
4Beijing Ditan Hospital Capital Medical University, China
5Peking University Third Hospital, China
6Dalian Public Health Clinical Center, China
\{zhangxueshuai, shenjiakun, yanyonghong\}@hcc1.ioa.ac.cn

Abstract

A fast, efficient and accurate detection method of COVID-19 remains a critical challenge. Many cough-based COVID-19 detection researches have shown competitive results through artificial intelligence. However, the lack of analysis on vocalization characteristics of cough sounds limits the further improvement of detection performance. In this paper, we propose two novel acoustic features of cough sounds and a convolutional neural network structure for COVID-19 detection. First, a time-frequency differential feature is proposed to characterize dynamic information of cough sounds in time and frequency domain. Then, an energy ratio feature is proposed to calculate the energy difference caused by the phonation characteristics in different cough phases. Finally, a convolutional neural network with two parallel branches which is pre-trained on a large amount of unlabeled cough data is proposed for classification. Experiment results show that our proposed method achieves state-of-the-art performance on Coswara dataset for COVID-19 detection. The results on an external clinical dataset Virufy also show the better generalization ability of our proposed method. Index Terms: cough, acoustic features, convolutional neural networks, pre-trained model, COVID-19 detection

1. Introduction

Since the outbreak of COVID-19 in December 2019, over 440 million confirmed cases and 5.9 million deaths have been reported by the WHO. The variants of the original virus are more infectious and are spreading rapidly. One of the effective measures to control the epidemic is to screen out COVID-19 individuals from the crowd.

At present, the most commonly used method for COVID-19 detection is Reverse Transcription Polymerase Chain Reaction (RT-PCR). However, this method is restricted to time, resources, and the way of detection with lower sensitivity in reality [1]. Other diagnostic methods, such as CT scans, have strict requirements on medical equipment [2, 3]. Due to these limitations, a repeatable, real-time, cost-effective and individually achievable method is of vital importance to detect COVID-19 individuals in large-scale populations effectively.

As cough is one of the main symptoms of COVID-19 [4], many researchers have used cough sounds to distinguish COVID-19 individuals from healthy individuals. Some of these studies used machine learning methods for classification with handcrafted features as inputs [5, 6, 7, 8]. Short-Time Fourier Transform (STFT) based features are extracted and input into deep neural networks in some other researches [9, 10, 11]. As pre-trained model has achieved excellent performance in other tasks, it has also been applied to cough-based COVID-19 detection [12, 13, 14, 15]. The above studies use acoustic features that have already been widely used in other audio tasks. However, few studies utilize the characteristics of cough itself. In our previous work [16], we proposed a multi-band neural network to detect COVID-19 individuals by using the characteristic that cough energy is concentrated in low frequency [17].

In this paper, we further propose two energy-related features to characterize cough sounds. A single cough consists of explosive, intermediate and voiced phases [18]. Since cough is short and intense compared to speech, the energy is more variable at different phases and frequencies. To describe the dynamic information in adjacent frames and frequency bands, we propose a time-frequency differential feature (TFDF). We also propose an energy ratio feature to calculate the energy span of different phases of cough. Considering the limited amount of cough sounds from COVID-19 individuals, we also use pre-trained models for parameter initialization. Unlike previous researches that used pre-trained models on ImageNet [19] or Audio Set [20], we use contrastive learning strategy to learn the latent features from large amounts of unlabeled cough sounds. As a result, our proposed method achieves an improvement on AUC by 4.28% and 10.47% absolutely on Coswara [21] and Virufy [22] respectively. In short, the main contributions of this paper are summarized as follows:

- We propose a time-frequency differential feature to describe the dynamic information of cough sounds in adjacent frames and frequency bands.
- We propose an energy ratio feature to measure the energy span of different phases of cough.
- We propose a convolutional neural network structure with two parallel branches and use pre-trained model based on a large number of unlabeled cough data for parameter initialization.
2. Method

The proposed framework is shown in Figure 1. We first use cough and non-cough recordings to train an independent deep neural network based cough activity detection module (DNN-CAD) \cite{23} to remove the silence and speech segments in cough recordings. Log-mel spectrograms and proposed features are then extracted and fed into two parallel branches of the classification network to give the probability of cough belonging to COVID-19 individuals. Apart from the final linear layer, the parameters of the classification network are initialized by the weights of the pre-trained model.

2.1. Time-Frequency Differential Feature (TFDF)

The TFDF is generated by calculating the energy difference at frequency and time domain of the log-mel spectrograms. Since the cough energy is concentrated in low frequency and varies in different frequency bands, we first use the energy difference between adjacent frequency bands to describe the dynamic changes in frequency domain. Considering the instantaneity of cough sounds in time domain, we then calculate the energy difference at frame level. This calculation process is shown in Equations 1 - 3:

\[
\Delta E_F(t,m) = E(t,m) - E(t,m + 1) \tag{1}
\]

\[
\Delta E_T(t,m) = E(t + 1,m) - E(t,m) \tag{2}
\]

\[
\Delta E_{FT}(t,m) = \Delta E_F(t + 1,m) - \Delta E_F(t,m) = E(t + 1,m) - E(t,m) - E(t + 1,m + 1) + E(t,m + 1) \tag{3}
\]

where \(t\) denotes the frame number and \(m\) denotes the sub-band number. \(E(t,m)\) means the energy at the \(t\)th frame and \(m\)th sub-band of the log-mel spectrogram. \(\Delta E_F(t,m)\), \(\Delta E_T(t,m)\), \(\Delta E_{FT}(t,m)\) represent the energy difference in frequency domain, time domain, both time and frequency domain respectively, in which \(\Delta E_{FT}\) is TFDF. We select the cough sounds with similar waveforms from COVID-19 and healthy individuals. Figure 2(a) and Figure 2(b) show the waveforms. The energy distributions are similar in the log-mel spectrograms with eight mel filters shown in Figure 2(c) and Figure 2(d). From the TFDF shown in Figure 2(e) and Figure 2(f), a more obvious difference in energy distributions can be observed.

Algorithm 1 Calculating energy ratio

\begin{verbatim}
Input: Waveform: wav[n]
Hyper-parameters: win_len, hop_len, threshold, ρ
Output: Energy ratio: ratio
framenum=(n - win_len) / hop_len + 1
for i ← 1 to framenum do
 //calculate the energy list e
 for j ← 1 to win_len do
 e[i] ← e[i] + wav[(i - 1) * hop_len + j]^2
 end for
 e[i] ← √e[i]
end for
e ← SortDescend(e) //sort e in descending order
e ← Remove(e, threshold) //remove item less than threshold
length ← len(e) //get the length of the list
for i ← 1 to length * ρ do
 max_energy ← max_energy + e[i]
 min_energy ← min_energy + e[length - i]
end for
ratio ← min_energy / max_energy
\end{verbatim}
2.2. Energy Ratio

There are differences in peak energy and energy distribution in different cough phases among different types of cough [18]. Therefore, we propose an energy ratio feature by calculating the ratio of minimum energy to maximum energy of cough’s different phases to measure the energy span of cough sounds. The calculation steps are illustrated in algorithm 1.

The \(win_{len} \) and \(hop_{len} \) are the window length and hop length when framing. \(\text{Threshold} \) is average energy of silence segments and \(\rho \) is the percent of the maximum and minimum energy, which is 0.2 in our experiments. Figure 3 shows the distribution of energy ratios of cough sounds in Coswara dataset. The average energy ratio of cough sounds in healthy people is 0.035, which is higher than 0.03 in COVID-19 individuals.

![Figure 3: Distribution of energy ratios](image)

2.3. Pre-trained Model on Cough Sounds

The proposed convolutional neural network structure is shown in Figure 1. In classification network, the ResNet block consists of four building blocks of ResNet18 [24].

To avoid the influence of irrelevant information caused by non-cough sounds during pre-training model, we use a large number of unlabeled cough sounds to learn the latent features through contrastive learning proposed in [25]. After DNN-CAD, mini-batches and a queue are constructed and log-mel spectrograms and proposed features are extracted. The features in mini-batches are augmented in different ways to form positive sample pair and the features in queue are considered as negative samples. These features are input into two encoders and the parameters of these two encoders are updated by minimizing the contrastive loss and momentum update, respectively. The specific implementation refers to [25].

3. Experiment

3.1. Datasets

Three open-sourced cough sound datasets are used for pre-training without any label information. The data distribution is shown in Table 1.

Then Coswara dataset is used for classification, which is one of the most widely used open-sourced crowd-sourced cough datasets to distinguish COVID-19 individuals from healthy individuals. Each person records a heavy cough and a shallow cough in this dataset. We randomly divide the data into train, validation and test set in a ratio of 3:1:1. The cough recordings of the same person only appear in one set to ensure speaker independence. In addition, we also use an external clinical dataset from Virufy to test the generalization ability of the proposed model. The data distribution is shown in Table 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Set</th>
<th>COVID-19</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coswara [21]</td>
<td>train</td>
<td>531</td>
<td>1188</td>
</tr>
<tr>
<td></td>
<td>test</td>
<td>177</td>
<td>396</td>
</tr>
<tr>
<td>Virufy [22]</td>
<td>test</td>
<td>48</td>
<td>73</td>
</tr>
</tbody>
</table>

3.2. Experiment setup

All the audios are first resampled to 16kHz. We use a variable chunk size in training to adapt to different audio lengths in test set, which means the audio will be repeated or cropped until the audio length is equal to chunk size.

The log-mel spectrograms are extracted with a window length of 512 samples, hop length of 128 samples and 128 mel filters. Except for the number of mel filters, the parameters of TFDF are the same as those of log-mel spectrograms.

When pre-training, we apply data augmentation on the fly, including adding noise, time shift, time stretch, and SpecAugment [29]. When fine-tuning the classification network, we also use SpecAugment to overcome overfitting. Model parameters are initialized by default when the pre-trained model is not used.

The mini-batch size is 64 and we use Adam optimizer with a weight decay of 1e-3. The learning rate is 1e-4 and multiplied by 0.7 every 20 epochs.

Area under receiver operating characteristic (ROC-AUC) is used to measure the model performance, which is calculated by sensitivity and specificity at different probability thresholds.

3.3. Results and Analysis

The experimental results are shown in Table 3. We list the results of some other studies on Coswara dataset on the top of Table 3. In experiment 1, the 128-dimensional log-mel spectrograms are input into one of the branches of the classification network as baseline, which achieved an AUC of 0.8163 on the test set. Based on our previous research [16], we also split the 128-dimensional log-mel spectrograms into low and high parts along frequency axis and input them into the two branches of the classification network in experiment 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>samples</th>
<th>total time (after CAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC50 [26]</td>
<td>40</td>
<td>1min8s</td>
</tr>
<tr>
<td>IAteos [27]</td>
<td>4657</td>
<td>3h50min43s</td>
</tr>
<tr>
<td>COUGHVID [28]</td>
<td>8996</td>
<td>9h35min53s</td>
</tr>
</tbody>
</table>

3.3.1. Performance of proposed method

In experiment 3, 128-dimensional log-mel spectrograms and TFDF with 8 mel filters are input into the parallel branches of the classification network. The AUC increases by 2.03% absolutely compared to experiment 1. Although experiment 2 achieves better performance than experiment 1 by separating log-mel spectrograms into low and high frequency bands, the AUC of experiment 3 has still been improved by 1.13% compared to that of experiment 2 by adding TFDF under the condition of the same model parameter size. This result indicates that TFDF can capture similar dynamic changes in cough sounds of...
Table 3: Experimental results on Coswara. ExId means experiment id. Sen means sensitivity. Spe means specificity. LMS means log-mel spectrogram. ER means energy ratio. PM means using pre-trained model for parameter initialization.

<table>
<thead>
<tr>
<th>ExId</th>
<th>Feature</th>
<th>AUC</th>
<th>Sen</th>
<th>Spe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LMS</td>
<td>0.8163</td>
<td>0.5480</td>
<td>0.8889</td>
</tr>
<tr>
<td>2</td>
<td>LMS(split)</td>
<td>0.8253</td>
<td>0.6102</td>
<td>0.8737</td>
</tr>
<tr>
<td>3</td>
<td>Ex 1 + TFDF</td>
<td>0.8366</td>
<td>0.5311</td>
<td>0.9369</td>
</tr>
<tr>
<td>4</td>
<td>Ex 3 + ER</td>
<td>0.8422</td>
<td>0.5876</td>
<td>0.9116</td>
</tr>
<tr>
<td>5</td>
<td>Ex 4 + PM</td>
<td>0.8591</td>
<td>0.5989</td>
<td>0.9116</td>
</tr>
</tbody>
</table>

the same groups in time and frequency domain, which is helpful for distinguishing COVID-19 individuals from healthy people.

In experiment 4, the AUC increases by 0.56% compared to experiment 3 after the energy ratio is concatenated to TFDF. Although the improvement is quite slight, the result shows that the energy ratio represents a certain characteristic of cough sounds. A plausible explanation is that TFDF describes the dynamic information in adjacent frames and frequency bands, while energy ratio further supplements the energy span information between different cough phases.

Figure 4: ROC Curves

In experiment 5, model parameters are initialized by the weights of pre-trained model. With the same input features as experiment 4, the AUC increases by 1.69%. Finally, our proposed methods are superior to the model in experiment 1 on AUC with an improvement of 4.28% absolutely. Figure 4 shows the ROC curves of these experiments.

3.3.2. Influence of TFDF parameters on performance

The number of mel filters in TFDF is obtained through the following experiments. We use 8, 16, 32, 64 and 128 mel filters to extract TFDF with different dimensions. The experimental results show that the classification performance is quite similar when using 8, 16, 32 mel filters, but the performance will decrease when the number of mel filters increases to 64 and 128. The reason may be that higher dimensional TFDF pays more attention to the uniqueness of a sample rather than the similarity between samples of the same class, which results in overfitting on train set and performance degradation on test set.

We also explore the influence of differential scale on classification performance when extracting TFDF. To compare with experiment 3, the differential feature is obtained by calculating energy difference only along time axis or frequency axis. In Table 4, the model with either time differential feature or frequency differential feature outperforms the model in experiment 1, and the latter achieves a higher AUC. The reason may be that the difference in time domain may be affected by the times of cough, while the difference in frequency domain can better reflect the impact of COVID-19 on vocalization characteristics.

3.3.3. The results on Virufy test set

The model in experiment 1 achieves an AUC of 0.6376 on Virufy test set, which is lower than the AUC on Coswara. This may be due to the large difference in data distribution between the datasets. After adding TFDF and energy ratio features, the model in experiment 4 achieves an AUC of 0.7423, which shows a better generalization ability of our proposed model.

Table 4: Influence of TFDF parameters on performance. T, F, T-F mean calculating the energy difference in time, frequency, both time and frequency dimension, respectively.

<table>
<thead>
<tr>
<th>scale</th>
<th>Mel filters</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-F</td>
<td>8</td>
<td>0.8366</td>
<td>0.5311</td>
<td>0.9369</td>
</tr>
<tr>
<td>T-F</td>
<td>16</td>
<td>0.8360</td>
<td>0.5198</td>
<td>0.9495</td>
</tr>
<tr>
<td>T-F</td>
<td>32</td>
<td>0.8366</td>
<td>0.5254</td>
<td>0.9394</td>
</tr>
<tr>
<td>T-F</td>
<td>64</td>
<td>0.8345</td>
<td>0.4972</td>
<td>0.9444</td>
</tr>
<tr>
<td>T-F</td>
<td>128</td>
<td>0.8108</td>
<td>0.4802</td>
<td>0.9343</td>
</tr>
<tr>
<td>T</td>
<td>8</td>
<td>0.8317</td>
<td>0.5424</td>
<td>0.9242</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>0.8360</td>
<td>0.5480</td>
<td>0.9192</td>
</tr>
</tbody>
</table>

4. Conclusions

In this paper, a cough-based deep learning framework has been proposed to detect COVID-19 individuals in the crowd. According to the characteristics of cough sounds, we propose a time-frequency differential feature to describe the dynamic information and an energy ratio feature to measure the energy span of different phases of the cough. By using model pre-trained on a large amount of cough sounds for parameter initialization, our model achieves an improvement of 4.28% absolutely on AUC on Coswara dataset. The 10.47% increase in AUC on Virufy test set also shows the better generalization ability of our model.

For future work, we will further investigate the classification performance on COVID-19 individuals with different symptoms. Other sounds such as speech and breath will be combined to improve classification performance.

5. Acknowledgements

This work is partially supported by Beijing Municipal Science and Technology Project (No.Z111100002521020) and Hygiene and Health Development Scientific Research Fostering Plan of Haidian District Beijing (HP2021-11-50102).
6. References

