
 

 

 

ABSTRACT 

In this paper, task-specific adaptation is proposed to improve 
Chinese name recognition performance. Since acoustic 
models are usually trained using large vocabulary 
continuous speech corpora, there exists distortion between 
modeling and decoding in name recognition. To compensate 
the mismatch, task-specific adaptation, which is performed 
in the MLLR framework with multi-regression classes, is 
proposed. Experimental results show that task-specific 
adaptation is very effective in Chinese name recognition to 
compensate the mismatch. 

1. INTRODUCTION 

Name recognition is a practical and interesting application of 
speech recognition on telephony systems and on mobile 
communication. Many corporations, such as IBM, Nokia 
etc., try their best to improve the performance of name 
recognition.  

Name collection for modeling is an onerous burden and 
acoustic models are usually built using large vocabulary 
continuous speech corpora. When the models are used in 
Chinese name recognition, the mismatch between modeling 
and decoding may impact the recognition performance. This 
paper addresses the issue of Chinese name recognition and 
discusses how to compensate the mismatch.  

In the literature, there exist many speaker adaptation 
algorithms, such as MAP and MLLR. The main aim of 
speaker adaptation is to compensate the mismatch between 
the specific speaker and the speaker-independent acoustic 
model. To compensate the distortion between modeling and 
decoding in Chinese name recognition with the acoustic 
model trained using large vocabulary continuous speech 
corpora, the usual speaker adaptation algorithms can also be 
utilized in this case. Thus task-specific adaptation, which is 
performed in the MLLR framework with multi-regression 
classes, is proposed and applied to improve name 
recognition performance. 

The MLLR speaker adaptation algorithm is proposed by 
Leggetter and Woodland [3] and it performs compensation 
by transforming the mean vectors (and the covariance 
matrices) of outputs through an affine transformation. In [4], 
Gales extended the algorithm with multi-regression classes, 
thus it can deal with large amounts of enrollment data and let 
the acoustic model more matched with the tested data. 

In this paper, extensive analysis on a large name database 
is performed and it is concluded that there exists triphones 
distribution distortion between the name corpus and the 
large vocabulary continuous speech corpora, thus 
task-specific adaptation is necessary to deal with the 
mismatch between modeling and decoding in Chinese name 
recognition. Then detailed implementation of the 
task-specific adaptation is described and the adaptation is 
performed in the MLLR framework with multi-regression 
classes. Finally experiments are designed to evaluate the 
proposed approach and the results show that task-specific 
adaptation is very effective in compensating the mismatch 
and can give a distinct performance improvement in Chinese 
name recognition. 

2. DATABASE ANALYSIS AND NECESSITY OF 
TASK-SPECIFIC ADAPTATION 

We have been researching Chinese name analysis and 
recognition and have collected a large name database, which 
includes 992424 Chinese names.  

2.1 Definitions of some terms 

There are many duplicate names in the database and we 
follow the definitions of some terms in [1]. A CDN 
(Character-Dependent Name) is defined as a name, with a 
unique character sequence, and different CDNs have 
different character sequences. A SDN (Sound-Dependent 
Name) is defined as a name with a unique pronunciation or 
sound, that is, different SDNs can be distinguished by 
syllable recognition combined with tone recognition. A SBN 
(Syllable-Based Name) represents a name with a unique 
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baseform syllable sequence regardless of tones, and 
different SBNs have different baseform syllables. 

According to the definitions above, our name database 
contains 580969 CDNs, 503357 SDNs and 420454 SBNs. 

2.2 Analysis on triphones 

In Chinese speech recognition, triphones can be classified 
into initial triphones and final triphones, where the base 
phones are consonants and vowels, respectively [2]. For 
initial triphones, the left phone is silence or one of 9 head 
vowels and the right phone is one of 11 tail vowels. For final 
triphones, the left phone and the right phone are either 
silence or one of 21 consonants. 

According to the definitions of triphones, our name 
database has 15298 triphones and 13851 triphones if not 
considering silence. While in large vocabulary continuous 
speech corpora, there exist 23745 triphones and 22295 
triphones if not considering silence [2].  

2.3 Necessity of task-specific adaptation 

As it is addressed above, there are many large vocabulary 
continuous speech corpora, and collecting large vocabulary 
names to build acoustic models is a difficult job. Thus the 
acoustic model used in name recognition is usually the same 
as that in large vocabulary continuous speech recognition. 

 

 Triphones Triphones 
with silence 

Triphones 
without silence 

Name corpus 15298 1447 13851 

Large vocabulary 
continuous 

speech corpora 
23745 1450 22295 

Table 1. Triphones distribution of large vocabulary continuous 
speech corpora and the name corpus 
 

Table 1 lists the triphones distribution of large vocabulary 
continuous corpora and the name corpus according to the 
analysis on triphones in section 2.2. It is obvious that the 
name database has only 64.4% triphones of Chinese large 
vocabulary continuous speech corpora. However, the 
number of triphones with silence is almost the same in the 
two corpora, which indicates great mismatch in triphones 
distribution between the two corpora. In other words, names 
have their special characteristics and a more focused 
triphone set, while large vocabulary continuous corpora 
have different characteristics and far more triphones in 
number. This brings about two problems, on the one hand, 
the training data are sparse and acoustic models suffer from 
insufficient training as we could observe from large 
vocabulary continuous speech recognition task; on the other 

hand, there are many redundant triphones that are not so 
important in a name recognition task. 

It is clear that there exists great mismatch between 
modeling and decoding in Chinese name recognition when 
large vocabulary continuous speech corpora are used to train 
the acoustic model. Thus it is necessary and effective to 
compensate the distortion. In this paper, task-specific 
adaptation is presented to deal with this problem. 

3. IMPLEMETATION OF TASK-SPECIFIC 
ADAPTATION  

This section depicts detailed the task-specific adaptation in 
the MLLR framework with multi-regression classes. 

3.1 Derivation of task-specific adaptation from speaker 
adaptation 

In the past years, there were many speaker adaptation 
algorithms proposed to compensate the distortion between 
speakers and speaker-independent acoustic models. MLLR, 
a famous speaker adaptation approach, is proposed by 
Leggetter and Woodland [3] and it performs compensation 
by transforming the mean vectors (and the covariance 
matrices) of outputs through an affine transformation.  

In this paper, we propose a task-specific adaptation in the 
MLLR framework with multi-regression classes. Since the 
aim of the adaptation is to compensate the mismatch 
between name recognition and the acoustic models, the 
adaptation data come from many speakers and cover all the 
triphones appearing in the name database to ensure that 
relevant model parameters could be adjusted to characterize 
those triphones better. 

3.2 Implementation of task-specific adaptation 

The implementation of task-specific adaptation is illustrated 
in the following steps. 

A. Segment observations to the outputs 

The segmentation is performed in a supervised mode 
given adaptation utterances and the corresponding 
transcriptions. The adaptation features are assigned to the 
mixture components of the outputs with the probability of 0 
or 1. 

B. Build regression tree 

    The regression tree is built according to the distances of 
the outputs’ means and a clustering procedure is applied. 
Figure 1 shows a simple binary regression tree, which 
consists of a hierarchy of regression classes and a set of base 
classes. A simple top-down scheme is performed to 
determine proper regression classes according to the number 
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Figure 1. Regression tree for adaptation with
multi-regression classes 
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of observations assigned to the classes to satisfy that each 
class has enough data to estimate the transformation matrix. 

 

 

 

 

 

 

 

 

C. Estimate transformation matrices 

The transformation is defined as follows 
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where K denotes the number of regression classes, the 
outputs are composed of M mixture Gaussian components, 
and k.  denotes the outputs assigned to regression class k. 
Transformation parameters },{ kk b.  only modify the outputs 
belonging to regression class k. The estimation is 
implemented in the Maximum Likelihood criterion using the 
EM algorithm. The auxiliary function can be formulated as 
follows 

where },...,1,,{ˆ Kkbkk == ..  is the transformation 
parameters needed to be estimated and .  is the parameters 
estimated in the last iteration, )(it.  denotes the probability 
of ty  belonging to output i . The estimates of the 
transformation parameters can be obtained by letting the 
auxiliary function maximum, which has been described 
detailed in [3,4] and this paper will not deal with it. 

D. Adapt the acoustic model 

For output )( kii .. , the transformation described in 
equation (1) is adopted to modify the acoustic model. 

4. EXPERIMENTAL EVALUATION 

This section presents the experiments on task-specific 
adaptation in Chinese name recognition. 

4.1 Baseline system and the corpora 

The baseline system is an isolated-word recognizer, and the 
acoustic model is trained using large vocabulary continuous 

speech corpora, including the 863 mandarin speech corpus 
and some other corpora. The model has 827 outputs, each of 
which has 8 mixture components. The 39-d feature consists 
of log-power and 12-d MFCC and their 1st- and 2nd-order 
derivatives. A one-pass decoder is used for recognition. The 
recognition engine has showed good performance in large 
vocabulary continuous speech recognition [5]. 

To testify the performance of task-specific adaptation, two 
corpora, including the adaptation corpus and the test corpus, 
were designed. All names were chosen from the 
992424-name database. The adaptation corpus has 9997 
names and they were chosen from 420454 SBNs to cover all 
the triphones appearing in the database with fewest names. 
The corpus was divided into 20 subsets, each of which has 
about 500 names. The adaptation corpus was recorded by 20 
speakers and each read one subset. The test corpus contains 
3000 names stochastically chosen from the SBNs in the 
name database and was divided into 10 subsets, each of 
which was read by a speaker different from those who read 
the adaptation corpus. 

For the test corpus, there are 3000 names, each of which 
has a different syllable sequence, so we can design a 
3000-name recognizer. The baseline recognition accuracy 
for the test corpus is 94.2%. 

4.2 Task-specific adaptation experiment 

For task-specific adaptation, the adaptation corpus is used to 
modify the acoustic model and the test corpus is used to test 
the performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before adaptation, a regression tree is built according to 
the distances of 827 outputs of the acoustic model and then 
the features of 9997 adaptation names are segmented to the 
outputs in the supervised mode given the corresponding 
transcriptions. Then, the depth of the regression tree and the 
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Figure 2. task-specific adaptation recognition results 
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number of regression classes are determined according to the 
number of features assigned to each node to ensure that each 
class has enough data to estimate robustly the transformation 
matrix (Here, “enough data” is determined by threshold T). 
Finally the transformation matrices are estimated and the 
corresponding output parameters are modified. 

Figure 2 depicts the experimental results of task-specific 
adaptation for Chinese name recognition. The figure shows 
that when T is from 8000 to 24000, the recognition accuracy 
is almost above 96.1%. Since the baseline accuracy is only 
94.2%, it is obvious that task-specific adaptation can 
introduce word error rate reduction about 33.8%. In other 
words, it is concluded that task-specific adaptation is very 
effective in name recognition to compensate the mismatch 
between modeling and decoding. 

5. CONCLUSION 

One important issue on Chinese name recognition, 
task-specific adaptation, which is proposed to compensate 
the mismatch between modeling and decoding in Chinese 
name recognition using acoustic model trained using large 
vocabulary continuous speech corpora, is discussed 
extensively in this paper. Experimental evaluation shows 
that the proposed approach is very effective to compensate 
the mismatch and can introduce a distinct performance 
improvement. 
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