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Abstract
Domain mismatch, caused by the discrepancy between training
and test data, can severely degrade the performance of speaker
verification (SV) systems. What’s more, both training and
test data themselves could be composed of heterogeneous sub-
sets, with each subset corresponding to one sub-domain. These
multi-source mismatches can further degrade SV performance.
This paper proposes incorporating maximum mean discrepancy
(MMD) into the loss function of autoencoders to reduce theses
mismatches. Specifically, we generalize MMD to measure the
discrepancies among multiple distributions. We call this gener-
alized MMD domain-wise MMD. Using domain-wise MMD as
an objective function, we derive a domain-invariant autoencoder
(DAE) for multi-source i-vector adaptation. The DAE directly
encodes the features that minimize the multi-source mismatch.
By replacing the original i-vectors with these domain-invariant
feature vectors for PLDA training, we reduce the EER by 11.8%
in NIST 2016 SRE when compared to PLDA without adapta-
tion.

1. Introduction
Using i-vector as an unsupervised feature extraction method
and PLDA as a supervised channel compensation technique
have been very successful in speaker verification [1, 2]. How-
ever, like many machine learning algorithms, i-vector/PLDA
assumes that the training data and test data are independently
sampled from the same distribution. When training data and
test data have a severe mismatch, the performance degrades
rapidly [3–9]. Mismatch between training data and test data
is not uncommon, as it can be caused by a lot of factors such
as languages, channels, noises, and genders. Basically, col-
lecting more data to retrain the system is time-consuming and
computationally-expensive; such a solution is also unrealistic
in some scenarios. It is desirable to use the existing data and
a small amount of target-specific data to modify the system
to meet the need, which is essentially what domain adaptation
(DA) does.

Early attempts in i-vector based DA require the in-domain
data to have speaker labels. For example, Garcia-Romero and
McCree [3] computed the MAP-estimates of the in-domain
within-speaker and across-speaker covariance matrices in the
i-vector space using the speaker labels from the in-domain data.
In [5], these matrices are treated as latent variables and their
joint posterior distribution is factorized using variational Bayes
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so that the MAP point estimates of the matrices can be com-
puted from the factorized distributions. The point estimates are
then used for scoring in the in-domain environment. Another
approach is to generate hypothesized speaker labels via unsu-
pervised clustering [4, 10, 11]. Given the hypothesized labels,
the covariance matrices of in-domain data can be computed as
usual and can be interpolated with the out-of-domain covari-
ance matrices to obtain an adapted PLDA model. Of course,
correctly inferring all of the missing labels is even harder than
performing speaker verification. However, as shown in [4], even
imperfect labels can achieve performance almost as good as the
correct labels. Still, cluster-based approaches require a lot of
heuristics to set the number of clusters.

It is also possible to carry out the unsupervised DA with-
out inferring the missing labels at all. Most of the methods in
this category assume that there is a common feature space in
which the in-domain and the out-domain have a minimum mis-
match. DA aims to project data onto such feature space and
uses the projected data to train a classifer. As mismatch can
be caused by multiple sources, it is helpful to divide the train-
ing data into subsets according to their sources before finding
a common feature space. This is called multi-source domain
adaptation in the literature [12]. In addition to the robustness to
heterogeneous sources, this approach also has the potential to
generalize to unseen domains, as it does not assume a particular
in-domain environment. The inter-dataset variability compen-
sation (IDVC) [6] is a typical example of this approach. IDVC
divides the training data into several subsets, and for each sub-
set, the mean is computed. The means of these subsets are used
to find the directions of maximum inter-dataset variability; then
the subspace corresponding to these directions is removed from
all i-vectors.

Several theoretical works in DA [13–15] suggest that min-
imizing the divergence between the in-domain and out-domain
distributions is very important for obtaining a good represen-
tation for DA. From this perspective, approaches based solely
on the differences among the domain-means, such as IDVC, are
not enough for finding a good representation. The reason is that
even if the means of the distributions are exactly the same, there
could still be severe mismatch between the data distributions if
their variances are very different. Thus, to reduce inter-dataset
mismatch, it is important to consider the statistics beyond the
means.

To better utilize the statistics of multi-source data, we con-
sider using maximum mean discrepancy (MMD) as an objective
function for measuring multi-source mismatches. Maximum
mean discrepancy is a nonparametric method for measuring the
distance between two distributions [16–18]. With a properly
chosen kernel, MMD can utilize all moments of data. We gen-
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eralize MMD to measure the discrepancies among multiple dis-
tributions. Then, we use the generalized MMD as an objective
function for training autoencoders. With this objective function,
the autoencoders learn the features that contain less domain-
specific information but are still relevant to the classification
task. Because the ultimate goal of the autoencoders is to make
the feature vectors invariant to domain mismatch, we refer to
them as domain-invariant autoencoders (DAE).1

2. The I-vector/PLDA Framework
Since its first appearance [1], i-vector has become the de facto
choice for the representation of utterances in speaker verifica-
tion and other related areas. The i-vector approach is essen-
tially a factor analysis (FA) technique trying to find a low-
dimensional subspace that captures most of the variations in the
GMM-supervectors. Specifically, the GMM-supervector [20]
of utterance t can be generated by the following generative
model:

µt = µ+Twt, (1)

where µ is a supervector formed by stacking the means of a
universal background model (UBM) and T is a low-rank total
variability matrix. The posterior mean of wt is the i-vector xt

of utterance t.
As i-vector contain all sort of variabilities in utterances,

channel compensation techniques are essential for suppressing
the non-speaker variability. Among them, probabilistic dis-
criminant analysis (PLDA) [2] performs the best. Given a set
of D-dimensional length-normalized [21] i-vectors {xij ; i =
1, . . . , N ; i = 1, . . . , Hi; } fromN speakers, each withHi ses-
sions, PLDA assumes that the i-vectors can be expressed as the
following factor analysis model:

xij = m+Vzi + εij , (2)

where m is the global mean of the i-vectors, V defines the
speaker subspace, zi is the speaker factor and εij is the residual
noise.

3. Maximum Mean Discrepancy
Autoencoder

In this section, we first highlight the domain mismatches in
NIST 2016 SRE data and the limitation of IDVC. Then, we
explain why maximum mean discrepancy is theoretically bet-
ter than IDVC and how it can be incorporated into the training
of autoencoders for extracting domain-invariant features.

3.1. Multi-source Mismatch in NIST 2016 SRE

NIST 2016 speaker recognition evaluation (SRE16) introduces
various new challenges to speaker recognition [22, 23], among
which the multilingual setup brought the most attention. Unlike
previous SREs, both development (Dev) and evaluation (Eval)
data in SRE16 comprise utterances spoken in non-English lan-
guages. Table 1 shows the composition of SRE16 data. Be-
cause all of the SRE16 data are non-English, training using data
from previous SREs results in poor performance. Training us-
ing only SRE16 data is also not feasible, as there are only 2,472
segments in total and a very small number of them are labeled.
Besides, the labeled development data have different languages
than the evaluation data.

1Do not confuse with the denoising autoencoder [19].

Dataset Category Language

Dev Unlabeled Cantonese and Tagalog
Dev Unlabeled Mandarin and Cebuano
Dev Labeled Mandarin and Cebuano
Eval Enrolment Cantonese and Tagalog
Eval Test Cantonese and Tagalog

Table 1: The composition of SRE16 data. “Labeled” means
speaker labels are provided. “unLabeled” means speaker labels
are not provided.

Fig. 1 shows the t-distributed stochastic neighbor embed-
ding (t-SNE) [24] of i-vectors from SRE16 development data
and previous SRE data. In the figure, datasets are colored ac-
cording to their genders and languages. We can see that there
are significant mismatches in terms of cluster means and cluster
variances. Also, the multi-source mismatches occur not only
between the English data (ENG F and ENG M) and SRE16
data but also within SRE16 data (CAN F, CAN M, TGL F and
TGL M).

3.2. Inter-dataset Variability Compensation

Inter-dataset variability compensation (IDVC) was proposed in
[6]. IDVC follows the subspace removal approach proposed in
[25]. It aims to find the directions in the i-vector space with the
largest inter-dataset variability and removes the i-vector vari-
ability in these directions. This is achieved by projecting the
i-vectors x’s as follows:

x̂ = (I−WWT)x, (3)

where the columns of W span the subspace of unwanted vari-
ability. W comprises of the eigenvectors of the covariance ma-
trix of the subset means. Note that in IDVC the domain mis-
match is defined by the variances and covariances of subset
means.

However, the mismatch of datasets may not only manifest
in the dataset means, but also in the higher-order statistics of
these datasets. The limitation of IDVC will become apparent
when we consider some Gaussian distributions (one for each
dataset) with identical means but different covariance matri-
ces. Despite of the severe mismatches among these Gaussians,
IDVC considers these Gaussians to be identical and will not re-
move any subspace (W in Eq. 3 is a null matrix) to reduce the
mismatches.

3.3. Maximum Mean Discrepancy

The theoretical works in DA [13–15] suggest that it is important
to have a good measurement of the divergence between the data
distributions of different domains. Maximum mean discrepancy
is a distance measure on the space of probability. Given two sets
of samples {xi}Ni=1 and {yj}Mj=1, MMD computes the mean
squared difference of the statistics of the two datasets:

DMMD =

∥∥∥∥∥
1

N

N∑

i=1

φ(xi)− 1

M

M∑

j=1

φ(yj)

∥∥∥∥∥

2

, (4)

where φ is a feature map. When φ is the identity function, the
MMD distance simply computes the discrepancy between the
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Figure 1: Scatter plot of 2-dimensional t-SNE embedded i-
vectors. In the legend, “M” and “F” stand for male and female,
respectively, and “CAN”, “ENG” and “TGL” stand for Can-
tonese, English and Tagalog, respectively.

sample means. Eq. 4 can be expanded as:

DMMD =
1

N2

N∑

i=1

N∑

i′=1

φ(xi)
Tφ(xi′)

− 2

NM

N∑

i=1

M∑

j=1

φ(xi)
Tφ(yj) +

1

M2

M∑

j=1

M∑

j′=1

φ(yj)
Tφ(yj′).

(5)

As each term in Eq. 5 involves dot products only, the kernel
trick can be applied:

DMMD =
1

N2

N∑

i=1

N∑

i′=1

k(xi,xi′)

− 2

NM

N∑

i=1

M∑

j=1

k(xi,yj) +
1

M2

M∑

j=1

M∑

j′=1

k(yj ,yj′),

(6)

where k(·, ·) is a kernel function.

3.4. MMD as Autoencoder’s Loss Function

Assume that we have in-domain data {xin
i }Nin

i=1 and out-domain
data {xout

j }Nout
j=1. We want to learn a transform h = f(x) such

that the transformed data {hin
i }Nin

i=1 and {hout
j }Nout

j=1 are as similar
as possible. The mismatch between the transformed data can be
measured by MMD:

DMMD =
1

N2
in

Nin∑

i=1

Nin∑

i′=1

k(hin
i ,h

in
i′)

− 2

NinNout

Nin∑

i=1

Nout∑

j=1

k(hin
i ,h

out
j ) +

1

N2
out

Nout∑

j=1

Nout∑

j′=1

k(hout
j ,h

out
j′ ).

(7)

Figure 2: Architecture of the proposed domain-invariant au-
toencoder (DAE) when data are from three different domains.
Solid black arrows represent the connections between neurons.
Dashed red arrows represent the hidden nodes’ outputs for com-
puting the domain-mismatch loss or autoencoder’s outputs for
computing the reconstruction loss.

When the data come from multiple sources, we want the
transformed data to be as similar to each other as possible. To
this end, we define a domain-wise MMD measure. Specifically,
given D sets of data {xd

i }Nd
i=1, where d = 1, 2, . . . , D, we want

the transformed data {hd
i }Nd

i=1 to have small loss as defined by
the following equation:

Lmismatch =
D∑

d=1

D∑

d′=1
d′ 6=d

(
1

N2
d

Nd∑

i=1

Nd∑

i′=1

k(hd
i ,h

d
i′)

− 2

NdNd′

Nd∑

i=1

Nd′∑

j=1

k(hd
i ,h

d′
j ) +

1

N2
d′

Nd′∑

j=1

Nd′∑

j′=1

k(hd′
j ,h

d′
j′ )

)
.

(8)

Of course, we also want to retain as much non-domain related
information as possible. Assume that another transform can re-
construct the input from h:

x̃ = g(h), (9)

where x̃ is the reconstruction of the input x. We want to make
x̃ as close to x as possible by minimizing:

Lrecons =
1

2

D∑

d=1

Nd∑

i=1

∥∥∥xd
i − x̃d

i

∥∥∥
2

. (10)

Both objectives can be achieved by an antoencoder comprising
an encoder network f and a decoder network g, with the loss
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function:

Ltotal = Lmismatch + λLrecons, (11)

where λ is a parameter controlling the importance of the recon-
struction loss. Note that both f and g can be multilayer neural
networks. As the autoencoder encodes domain-invariant infor-
mation, we call it domain-invariant autoencoder (DAE). Fig. 2
shows the architecture of a DAE for three domains (D = 3),
with each row corresponding to one domain. Note that the
weights in the rows are shared across all domains.

4. Experiment Setup
4.1. Speech Data and Acoustic Features

Speech files from NIST 2004–2010 Speaker Recognition Eval-
uation (hereafter, referred to as SRE04–SRE10)2 and the devel-
opment set of SRE16 (SRE16-dev) were used as development
data and speech files from the evaluation set of SRE16 (SRE16-
eval) were used as test data. The speech regions in the speech
files were extracted by using a two-channel voice activity de-
tector [26]. For each speech frame, 19 MFCCs together with
energy plus their 1st and 2nd derivatives were computed, fol-
lowed by cepstral mean normalization and feature warping [27]
with a window size of three seconds. A 60-dim acoustic vector
was extracted every 10ms, using a Hamming window of 25ms.

4.2. I-vector Extraction and PLDA Model Training

I-vectors derived from SRE04–SRE10 were used for training
a DAE (Fig. 2) with 300 hidden nodes and IDVC’s projection
matrix (W in Eq. 3) with rank = 6. The resulting networks
and projection matrix were then applied to the i-vectors derived
from SRE16. Then, principal component analysis (PCA) was
applied to the adapted i-vectors to reduce the dimension to 200.
Within-class covariance normalization (WCCN) and i-vector
length normalization were applied to the 200-dimensional i-
vectors [21, 28]. Then, we trained a gender-independent PLDA
model with 200 latent variables. PLDA scores were normal-
ized by S-norm using SRE16 development data as the cohort
set [29].

4.3. MMD Autoencoders and IDVC Training

The weights in the encoder and decoder networks of the DAE
are tied as in [30]. The DAE were trained by minimizingLtotal in
Eq. 11 using the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L–BFGS) algorithm [31]. To train the IDVC project
matrix and the DAE, we divided SRE04–10 and SRE16 data
into gender and language dependent subsets, each correspond-
ing to one domain. Excluding the minor data in SRE16, we have
six subsets: English male, English female, Cantonese male,
Cantonese female, Tagalog male and Tagalog female.

5. Results and discussions
5.1. General Performance Analysis

Table 2 shows the performance of IDVC and DAE. All systems
use PLDA as their backend. A classical i-vector PLDA sys-
tem without domain adaptation (No Adapt) is also included for
comparison. For the DAE, we used a quadratic kernel

k(x,y) = (xTy + 1)2

2https://www.nist.gov/itl/iad/mig/speaker-recognition

Figure 3: EER performance of IDVC and DAE in the gender-
and language-dependent subsets of SRE16-eval.

and set λ in Eq. 11 to 1.0. We used one hidden layer with
300 hidden units. The network has the structure 300(input)–
300(hidden)–300(output). For a more in-depth discussion of
the hype-parameter λ and the kernel choice, readers may refer
to [?].

We can see from Table 2 that both DAE and IDVC boost
the performance significantly in term of EER, although in terms
of minimum Cprimary and actual Cprimary, the improvement is
minor. We can also observe that DAE has a small improvement
over IDVC in terms of EER.

5.2. Subset Performance Analysis

To gain more insights into the performance of the DA methods,
we report the performance of the three systems on four gender-
and language-dependent subsets in Table 3 and Fig 3. The re-
sults suggest that Tagalog is more challenging than Cantonese,
with 20.55% and 19.89% EER in the male and the female, re-
spectively. Also, the female subsets seem to be more difficult
than the male ones. The performance of the four subsets im-
proves significantly after both domain adaptation methods. The
DAE has small improvement over IDVC on all of the four sub-
sets.

EER(%) mCprim aCprim

No Adapt 15.84 0.89 0.93
IDVC 13.08 0.86 0.93
DAE 12.79 0.85 0.91

Table 2: The Performance of DAE and IDVC and the per-
formance of a classical i-vector PLDA system without domain
adaptation in the SRE16 evaluation set. The DAE uses linear ac-
tivations in the hidden nodes. “mCprim” and “aCprim” are the
minimum detection cost and the actual detection cost as speci-
fied in the evaluation plan of SRE16.
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Cantonese Tagalog

Female Male Female Male

EER(%) Cprim ACprim EER(%) Cprim ACprim EER(%) Cprim ACprim EER(%) Cprim ACprim

No Adapt 10.92 0.77 0.87 10.87 0.74 0.96 20.55 0.93 0.94 19.89 0.94 0.96
IDVC 9.47 0.74 0.88 8.74 0.68 0.96 17.50 0.91 0.93 15.75 0.90 0.96
DAE 9.15 0.73 0.84 8.61 0.67 0.94 17.26 0.90 0.91 15.59 0.89 0.94

Table 3: The performances of IDVC and DAE on the subsets of the SRE16 evaluation set.

6. Conclusions and Future Work
In this paper, we proposed a domain-invariant autoencoder
(DAE) for multiple-source i-vector domain adaptation. Unlike
IDVC, with a quadratic kernel, the DAE can utilize the first and
the second moments of data for measuring the domain mis-
match. The experiments on SRE16 show that the DAE can
significantly improve SV performance. The experiments also
demonstrate that the proposed methods have small improve-
ment over IDVC.
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