Deep Representation Decomposition for Rate-invariant Speaker Verification

Fuchuan Tong†1, Siqi Zheng3, Haodong Zhou1, Xingjia Xie1, Qingyang Hong2, Lin Li1
1 School of Electronic Science and Engineering, Xiamen University, China
2 School of Informatics, Xiamen University, China
3 Speech Lab, Alibaba Group
{qyhong, lilin}@xmu.edu.cn

Abstract

While promising performance for speaker verification has been achieved by deep speaker embeddings, the advantage would reduce in the case of speaking-style variability. Speaking rate mismatch is often observed in practical speaker verification systems, which may actually degrade the system performance. To reduce intra-class discrepancy caused by speaking rate, we propose a deep representation decomposition approach with adversarial learning to learn speaker rate-invariant speaker embeddings. Specifically, adopting an attention block, we decompose the original embedding into identity-related component and rate-related component through multi-task training. Additionally, to reduce the latent relationship between the two decomposed components, we further propose a cosine mapping block to train the parameters adversarially to minimize the cosine similarity between the two decomposed components. As a result, identity-related features become robust to speaking rate and then are used for verification. Experiments are conducted on VoxCeleb1 data and HI-MIA data to demonstrate the effectiveness of our proposed approach.

Index Terms: speaker verification, speaker embedding, speaking rate, adversarial training

1. Introduction

Speaker verification is a typical biometric authentication technology that verifies the identities of speakers from their voices. Recently, deep learning based speaker verification algorithms have achieved excellent performance. The main task of deep embedding based speaker recognition system involves extracting a high dimensional embedding from an utterance that characterizes each speaker uniquely. Recently, deep neural speaker embeddings (x-vectors) extracted from time delay neural network (TDNN) [1] or other encoders (e.g., Res2Net [2], ECAPA-TDNN [3]) have become state-of-the-art for speaker verification. In terms of ‘in-the-wild’ environments and speaking-style variability, however, the embeddings will include speaker-unrelated information, which will significantly degrade their performance. Therefore, improving the robustness of speaker embeddings has become a crucial research issue for the ‘in-the-wild’ speaker verification task.

Most recently, a few works were proposed to eliminate the impact of identity-unrelated information. For example, Peri et al. [4] adopted an adversarial invariance architecture to train a network and extracted robust speaker-discriminative representations. Tai et al. [5] proposed the SEEF-ALDR framework to minimize the impact of identity-unrelated information via adversarial learning based disentangled representation. Similarly, Kwon et al. [6] improved the SEEF-ALDR framework and disentangled identity-related and identity-unrelated information using a mutual information criterion through an auto-encoder framework.

In this work, we focus on the speaking rate mismatch problem. This problem occurs when a speaker enrolled in a normal speaking rate but tested with a slower or faster speech utterance. Speaking rate mismatch is often observed in practical speaker verification systems. For example, people tend to speak faster when they are in a hurry, while speaking slowly due to exhaustion or illness. Small differences in speaking rate between enrollment and test utterances will not be a problem, but severe mismatch will lead to serious performance degradation. Zeng et al. [7] found that some speaker information will be discarded in fast speech, while slow speaking rate damages the spectrum of speech signals. In early works, Grimaldi et al. [8] studied the impact of speaking rate on speaker verification systems and confirmed that verification performance degraded due to speaking rate mismatch. Heerden et al. [9] used the phoneme duration as an additional feature and augmented it to the conventional Mel-frequency cepstral coefficients (MFCCs) to mitigate the impact of speaking rate mismatch. Rozi et al. [10] proposed a feature transform approach that projected the speech features with slow speaking rate to those with normal speaking rate.

In this paper, we propose a method to effectively decompose the original embedding into two uncorrelated components: identity-related component and rate-related component. We utilize a rate estimation task with a channel-wise attention block to obtain the rate-related feature and then disentangle it from the whole original embedding. Besides, to further reduce the latent relationship between the two decomposed components, we adopt a cosine similarity loss that minimizes the cosine similarity between the identity- and rate-related features in an adversarial manner. Specifically, a cosine mapping block is introduced to find the maximum similarity between the two components, while the encoder network and attention block aim to reduce the similarity adversarially. Through the feature decomposition and adversarial training, the rate information can be significantly removed. Our proposed framework can be implemented as a simple yet effective residual branch by integrating it into existing encoders while only adding a tiny amount of parameters and computation.

2. Related works

2.1. Time-scale modification

Given an audio signal $x(t)$, we can alter its rate to $x(\alpha t)$ by resampling and time-warping with a scale α. However, this simple method will change the audio fundamental frequency and
result in a different pitch. This can be seen from the frequency
domain, supposing the Fourier transform of \(x(t) \) is \(X(w) \), then
the Fourier transform of \(x(\alpha t) \) will be \(\alpha^{-1} X(\alpha^{-1} w) \), which
means the time-warping scale produces frequency components
shifting. These changes result in the audio sound as if they are
uttered by different people. Lee et al. [11] adopted this method
for data augmentation and assigned new speaker labels to the
augmented examples. That is to say, this method cannot be used
to simulate different speech rates for the same person, which re-
quires the same pitch content.

Thanks to the time-scale modification (TSM) technology,
we can apply it to simulate diverse speaking rate scenarios. The
TSM alters the duration of an audio signal while retaining its
local frequency content without affecting the pitch content and
the prosody information [12]. That is to say, the duration of
the original audio can be increased or decreased, but the im-
portant speaker identification features remain unchanged. By
doing so, the TSM makes the modified audio sound as if the
speaker is talking at a slower or faster pace. Current methods
for TSM can be roughly categorized into three categories: fre-
quency domain, time domain, and hybrid methods. In general,
time-domain methods are more effective at scaling transient sig-
als, while frequency-domain methods excel in scaling harmon-
ically complex audio. Hybrid methods leverage the strengths of
time and frequency domain methods to produce higher quality
results [13]. Recently, in the field of speech recognition and
language identification, several works [12, 14] have adopted the
TSM based algorithm for data augmentation.

2.2. Latent identity analysis

The latent identity analysis model can infer the latent variable
through a statistical model from the given observations. The
general formulation for latent identity analysis can be formu-
lated as:

\[
\Phi = \mu + \sum_{i=1}^{n} \mathbf{U}_i \mathbf{x}_i, \quad (1)
\]

where \(\Phi \in \mathbb{R}^{d \times 1} \) refers to the speaker representation, \(\mu \) is the
mean of all the representations, the columns of \(\mathbf{U}_i \in \mathbb{R}^{d \times m} \)
span the subspace of different variation and \(\mathbf{x}_i \sim N(0, I) \) de-
notes the latent variable.

Recently, a few works [15, 16] have applied the latent vari-
able model to speaker verification based on the variational au-
toencoder. However, how to smoothly apply latent variable
model to extract robust speaker embeddings still remains to be
explored.

2.3. Adversarial learning

Adversarial training technique has greatly facilitated speaker
verification in domain mismatch situations. In speaker verifica-
tion, the domain adversarial network usually consists of an en-
coder, a speaker discriminator, and a domain discriminator. The
encoder aims to fool the domain discriminator through learning
source embeddings that resemble the target embeddings, while
the domain discriminator aims to discriminate the learned em-
bodiments from target domain. By this minimax game between
the encoder and domain discriminator, the encoder can success-
fully minimize the distance between the source and target data
distribution in the feature space. Besides, adversarial learning
has been widely explored to improve the speaker embedding
robustness for noisy [4, 17, 18], cross-channel [19, 20, 21], and
short utterances [22] situations.

Unlike the general adversarial learning framework, we
adopt a simpler adversarial training approach, i.e., minimizing
the cosine distance between two features to reduce their corre-
lation.

3. Proposed methods

3.1. Feature decomposition

As audio contains intrinsic identity information and other infor-
mation, they can be jointly represented by the identity-related
feature and variability-related feature. Thus, we can decompose
the two features from the original embedding \(\Phi \) in a supervised
manner:

\[
x_{id} = \hat{V}_\Phi, \quad x_{rate} = \hat{U}_\Phi \quad (2)
\]

where, \(x_{id} \) is the identity-related feature, and \(x_{rate} \) is the rate-
related feature. \(\hat{V} \) and \(\hat{U} \) are the projection matrices, respec-
tively. However, the identity-related feature is latent variable,
implementing \(\hat{V} \) and \(\hat{U} \) in the network directly will be compli-
cated. Since the identity-related feature is what we need in the
rate-invariant speaker verification problem, and the rate-related
feature can be easily obtained through a rate estimation task,
we utilize a rate estimation task combining with a channel-wise
attention block [23, 24] to disentangle the rate-related features
from the embedding. More precisely, every input utterance is
labeled by speaker-id and rate-id (\(\text{slow} \), \(\text{normal} \), and \(\text{fast} \)),
and the identity estimation and rate estimation tasks update the
parameters of the network simultaneously. Besides, an atten-
tion model is applied to perform dynamic channel-wise fea-
ture recalibration for the multi-task learning. Figure 2 shows
an overview of our proposed method. We base on the assump-
tion that if the reinforced features learned by the attention block
are helpful for the variability estimation task, they should be
suppressed from the identity-related features. Thus, the decom-
position of the original embedding can be defined as:

\[
x_{id} = (1 - \sigma(\Phi)) \odot \Phi, \quad x_{rate} = \sigma(\Phi) \odot \Phi \quad (3)
\]

where \(\sigma \) represents an attention weight learned by the attention
model, and \(\odot \) represents element-wise multiplication.

3.2. Cosine similarity adversarial learning

The disentangled features, i.e., \(x_{id} \) and \(x_{rate} \), obtained through
the attention mechanism, however, may have some latent rela-
tionship with each other. That is to say, \(x_{id} \) may still con-
tain the speaking rate related information which degrades the
performance of speaker verification. To better guide the rate

Figure 1: An overview of the proposed method.
information disengaged from the original embedding, inspired by [25], we further consider minimizing the cosine similarity between x_{id} and x_{rate}. Intuitively, if the features of the two subspaces have low cosine similarity, their intrinsic latent relationship would also be very small. As shown in Figure 2, the cosine similarity loss is computed between the two decomposed features by the cosine mapping block. Precisely, we evaluated the cosine similarity loss as follow:

$$L_{cos} = (\overrightarrow{x_{id}} \cdot \overrightarrow{x_{rate}})^2$$

(4)

where \overrightarrow{x} is the normalized version of the fully-connected (FC) layer output embedding x', and \cdot represents dot production. The square function is used to constrain $L_{cos} \in [0, 1]$. Adopting adversarial learning, we divide the training process into two phases, termed as the cosine similarity maximization and minimization, respectively. That is to say, we first maximize the cosine similarity by training the cosine mapping module while freezing the encoder and attention module. Then, with the cosine mapping module fixed, cosine similarity is minimized along with the identity and rate estimation tasks by updating the encoder and attention module. By doing so, it plays a minimax game during the adversarial training procedure. Finally, it renders the two features almost orthogonal and further reduces the correlation between them.

Overall, the total objective function for the multi-task is formulated as:

$$L = L_{id} + \lambda_1 L_{rate} + \lambda_2 L_{cos}$$

(5)

where L_{id} is the additive margin (AM) softmax loss for the identity estimation task, L_{rate} denotes the rate estimation softmax loss, λ_1 and λ_2 are scalar hyper-parameters to balance these three losses.

4. Experiments

4.1. Dataset

To demonstrate the effectiveness of our proposed method, a dataset with different speaking rates is required and the amount of samples should be large enough to avoid overfitting. However, the size of available datasets to meet the experimental requirements is limited. In order to assess our systems’ robustness to speaking rate, we first created a large simulated dataset with different speaking rates based on the VoxCeleb1 dataset [26]. Then, experiments were conducted on both the augmented VoxCeleb1 simulated dataset and the HI-MIA [27] real corpus.

The training set of VoxCeleb1 includes 148,642 recordings uttered by 1,211 speakers, while the test set consists of 37,720 test trials, including 4,878 utterances from 40 speakers. The utterances in the VoxCeleb1 dataset were collected from online video, although not all of them were pronounced at a strictly normal speed, we assumed they were normal speaking rate utterances and labeled them as normal. To simulate different speaking rates from the original data, we adopted the FFmpeg libraries [28] based TSM algorithm to modify the original audio $x(t)$ to $x(\alpha t)$ with a scaling speed factor α. Compared with the original speech, if $\alpha < 1$, a slower speech was generated and labeled as slow, if $\alpha > 1$, a faster speech was generated and labeled as fast. In our experiments, the scale α ranged from 0.5 to 2.0 and the change step was set to 0.1. For the training set, we added one-fourth of the original data for each scale α less than 1.0 (0.5–0.9), while for each scale α which is greater than 1.0 (1.1–2.0), one-eighth of the original data was added. Thus, after being augmented by different speaking rates, the total training data size was about 3.5 times of the original data. Meanwhile, except for the original test trials, another 15 sets of test trials were also created, which were enrolled in normal speaking rate while tested in different specific speaking rates w.r.t a given α.

For the real scene speaking rate, experiments were conducted on the text-dependent speaker recognition database, HI-MIA. The phrase of HI-MIA is the wake-up words ‘Hi, Mia’ in Chinese. The data was collected in a real home environment using microphone arrays and a high-fidelity microphone. The recordings of each speaker could be categorized into three subsets according to the speaking speed (i.e., slow, normal, and fast). Considering that we focused on examining the effect of different speaking rates, other factors (e.g., far-field, cross-channel) should be excluded. Thus, we only selected close-talking microphone utterances for the creation of the disjoint training set (254 speakers) and test set (42 speakers). Then, three sets of trials with different speaking rates were created as the cross-product of the utterances in the test set. In other words, all possible target and impostor samples were created from the test set.

4.2. Experimental setting

For all of the audios, we extracted 40-dimensional MFCCs with a 25ms window and a 10ms frame shift, and an energy-based voice active detection (VAD) was conducted to filter out non-speech frames. Then, cepstral mean normalization (CMN) over a 3s sliding window was applied.

For the network implementation, we applied the extended time delay network (E-TDNN) describe in [29] as the encoder network. Our proposed framework was applied by integrating it into the segment-level. We utilized the cross-entropy loss for speaking rate prediction and the AM-Softmax loss for speakers classification. We alternately run the cosine similarity maximizing process for 20 iterations and then switched to minimizing process for 50 iterations. The empirically setting of hyper-parameters λ_1 and λ_2 in Equation 5 were: $\lambda_1 = 0.1$, $\lambda_2 = 0.1$.

Since we had only limited real-world data with different speaking rates, the model trained directly on these data would most likely to be overfitting. Therefore, we resorted to the transfer learning strategy for HI-MIA evaluations. Specifically, we utilized the models pre-trained on the VoxCeleb1 dataset for parameters initialization.

At testing stage, we computed the probabilistic linear discriminant analysis (PLDA) scoring and used the EER as the performance metric. All of these systems were implemented in ASV-Subtools [30].

4.3. Evaluations on VoxCeleb1

In this section, experiments were conducted on the VoxCeleb1 dataset. Five different systems were designed for comparisons, listed as below:

- **S1**: The baseline E-TDNN trained on the VoxCeleb1 training data.
- **S2**: The network trained on TSM simulated and original data (TSM aug.).
- **S3**: The feature decomposition system with attention block (FD att.).
- **S4**: The network trained with cosine similar adversarial learning (AL cos.).
- **S5**: The system combined with feature decomposition and cosine similar adversarial learning (FD-AL).
Table 1: Comparisons on VoxCeleb1 under different speaking rate test sets, the best results are bolded (EER[%]).

<table>
<thead>
<tr>
<th>Systems</th>
<th>Speaking rate scale α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>S1: Baseline</td>
<td>5.84</td>
</tr>
<tr>
<td>S2: TSM aug.</td>
<td>3.98</td>
</tr>
</tbody>
</table>

Comparisons between these systems under different speaking rate test sets are shown in Table 1. It is seen from the experimental results of S1 that when a small degree of speech rate mismatch happened, the performance reduced slightly. At the same time, more obvious degradation occurred in the slow test sets than the fast ones, which shows that the slow utterances cause more severe distortion for the spectrum. However, when a large degree of speech speed mismatch happened, it could sharply degrade the discriminative power of speaker embeddings, and more degradation occurred in fast speech. One intuitive explanation is that as the audio speed increases, the duration of the audio becomes shorter and contains less information.

As expected, S2 shows that adding simulated data can alleviate the mismatch problem and improve the performance significantly. The S3 and S4 show that feature decomposition or adversarial learning can further improve performance. The two systems both achieved about 15% performance improvement in all cases compared to the S2, which trained directly on augmented data. One can also see that in most cases, S4 outperforms S3, while S3 provides better robustness when the speaking rate mismatch became serious. In S5, we achieved the best results by combining feature decomposition and cosine similarity adversarial learning, which suggests the two methods are complementary. Surprisingly, our proposed method not only improves the performance in the mismatch case but also improves the performance in the normal audio speed test set. This observation indicates that the original embeddings contain speech rate information, which would affect the verification performance, while our proposed method could eliminate speech speed information and improve the discrimination ability for speaker embeddings.

4.4. Evaluations on HI-MIA

In this section, experiments were conducted on the real scene speaking rate dataset, HI-MIA. We firstly conducted experiments to evaluate whether the TSM based simulated data could characterize the real-world speech rate variability in the speaker verification task. To this end, we utilized the following four different evaluation systems:

- S6: The baseline system trained on the HI-MIA slow, normal, and fast speed utterances.
- S7: The system trained only on the HI-MIA normal rate utterances.
- S8: The system trained on the HI-MIA normal rate data combined with two-fold noise augmented copies. The noise data augmentation processing was followed the setup described in [1].
- S9: The system trained on the HI-MIA normal rate data with two-fold TSM based rate augmentation versions, the α was set to 0.8, 0.9, 1.1, and 1.2.

Table 2: EER[%] for verification on HI-MIA.

<table>
<thead>
<tr>
<th>Systems</th>
<th>Speaking rate</th>
<th>Slow</th>
<th>Normal</th>
<th>Fast</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>S6: Baseline</td>
<td>S9: Normal</td>
<td>1.25</td>
<td>1.13</td>
<td>4.64</td>
<td>2.34</td>
</tr>
<tr>
<td>S7: Normal</td>
<td>S7: Normal + Noise aug.</td>
<td>2.51</td>
<td>1.89</td>
<td>5.26</td>
<td>3.22</td>
</tr>
<tr>
<td>S8: Normal + TSM aug.</td>
<td>S8: Normal + Noise aug.</td>
<td>2.26</td>
<td>1.25</td>
<td>5.01</td>
<td>2.84</td>
</tr>
<tr>
<td>S9: Normal + TSM aug.</td>
<td>S9: Normal + TSM aug.</td>
<td>1.50</td>
<td>1.38</td>
<td>4.76</td>
<td>2.55</td>
</tr>
<tr>
<td>S10: FD att.</td>
<td>S10: FD att.</td>
<td>1.13</td>
<td>0.75</td>
<td>3.38</td>
<td>1.75</td>
</tr>
<tr>
<td>S11: AL cos.</td>
<td>S11: AL cos.</td>
<td>0.70</td>
<td>0.75</td>
<td>2.63</td>
<td>1.46</td>
</tr>
<tr>
<td>S12: FD-AL</td>
<td>S12: FD-AL</td>
<td>1.00</td>
<td>0.63</td>
<td>2.38</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Experimental results of are shown in the upper part of Table 2. We can see from the comparisons between S8 and S9 that S8 outperforms S9 in the normal rate test set, but S9 achieves better preferences under speaking rate mismatch conditions. Since the two systems were trained on the same training data size, it can be deduced that the improved performance achieved by S9 was benefited from the TSM based data augmentation. Besides, the performance of S9 is nearly similar to S6, which indicates that TSM based data augmentation could characterize the real-world speech rate variability and alleviate the real-world speaking rate mismatch problem.

Then, we conducted experiments based on systems of S10-S12 to validate the effectiveness of our proposed method in solving real scene speaking rate mismatch problems. The training datasets of system S10-S12 were the same as the training set of S6. The network structures of S10-S12 correspond to S3-S5. The lower part of Table 2 shows the results by feature decomposition and adversarial learning. We can observe that the experimental results were consistent with those on VoxCeleb1 test sets, which illustrates that our proposed method could also improve the speaker embeddings robustness in real-world speaking rates mismatch scenarios.

5. Conclusions

In this paper, we proposed an attention block and cosine similarity loss to obtain rate-invariant speaker embeddings. The attention block was used to obtain rate-related feature and then this feature was disentangled from the original embedding. The cosine similarity loss and cosine mapping block were introduced to minimize the cosine similarity between identity- and rate-related features adversarially. Experiments conducted on both VoxCeleb1 based simulated data and the HI-MIA realistic dataset demonstrated the superior effectiveness of our proposed method in dealing with the speaking rate mismatch problem. In the future, we are interested in validating our method on other speaker-unrelated variabilities, such as far-field, cross-channel, and noisy environments.

231
6. References

