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Abstract

Unsupervised boundary detection and classification is both a
theoretically interesting question and an important challenge
for speech technology. Theoretical interest lies in exploring
how and to what extent is the boundary information encoded in
purely acoustic material. For technology, automatic boundary
detection facilitates cheap and fast labeling of large corpora of
speech data. In this work we present a novel methodology of au-
tomatic and unsupervised boundary detection and classification
based on the continuous wavelet transform (CWT) technique.
Several approaches using lines of minimal amplitude, phase in-
formation and wavelet-based estimation of speech tempo are
evaluated and compared on Boston Radio News Corpus data.
The results show that this methodology using hierarchical in-
formation encoded in speech signal compares favorably with
traditionally used supervised boundary detection techniques us-
ing acoustic information.

Index Terms: boundary detection, continuous wavelet trans-
form, speech synthesis

1. Introduction

One of the most primary features of speech prosody have to do
with chunking speech into linguistically relevant units. Bound-
aries of various strength give rise to a hierarchy of speech con-
stituents. In this paper we present a novel method of boundary
detection based on an analysis of acoustic signal (fundamental
frequency and energy). We use a continuous wavelet transform
(CWT), which is in itself a hierarchical signal processing tech-
nique. The work primarily stems from a requirement to annotate
speech corpora automatically, in an unsupervised fashion for
text-to-speech synthesis (TTS) [1]. However, the presented rep-
resentations should be of interest to anyone working on speech
prosody.

Multiple methods of boundary detection have been pro-
posed. In text-to-speech synthesis framework, it is a common
practice to use punctuation and detected silences to represent
phrase boundaries. This simple method achieves good preci-
sion, but yields poor recall, missing most of the more subtle
boundaries (see e.g. [2]).

To cope with the finer boundary types, more refined meth-
ods aimed at improving detection recall have been proposed.
In the context of the present work, these methods can be dis-
tinguished along two dimensions: to supervised and unsuper-
vised techniques, and by the type of parameters and features
they make use of (acoustic, linguistic, etc.).

Supervised methods use machine learning, data-driven ap-
proach to identify appropriate local characteristics of acoustic
and other (lexical, syntactic) features associated with presence
of prosodic boundary [3]. While these techniques achieve good
accuracy in boundary prediction, they require considerable prior
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input of skilled specialists in annotating large volumes of speech
corpora used as a training material.

To avoid substantial expense associated with data labeling,
unsupervised methods have been also explored aiming to lo-
cate prosodic boundaries using features that can be extracted
directly from speech waveform (such as fo or gain). Although
this effort has been relatively successful, the existing techniques
(e.g., [4]) nevertheless make use of some annotated features,
predominantly associated with speaking rate variations known
to be associated with prosodic boundaries (phrase-final length-
ening). The state-of-the-art unsupervised labeling approach [4],
for example, makes use of syllable nuclei durations that need
to be extracted from speech material using a speech recognition
system, that is, a supervised method. While recognition sys-
tems such as force aligners are widely available for most well-
researched languages, they might not exist for less resourced
ones.

In this work we present a novel unsupervised method of
boundary detection exploiting hierarchically organized speech
information as revealed by wavelet analysis. The method aim at
using purely those prosodic features that can be extracted from
speech waveform using speech processing techniques. We thus
explore a method that in addition to fo and gain also extracts
tempo information directly from waveform using a CWT tech-
nique. We compare its accuracy in prediction with a wavelet-
based method using directly word durations from the annotated
corpus. Furthermore, we evaluate two procedures of boundary
prediction, one exploiting full information provided by wavelet
analysis while the other relying on phase-reset only. Finally,
we offer comparison to previous unsupervised and supervised
results on Boston Radio News Corpus (BURNC) [5].

1.1. Continuous Wavelet Analysis

Time-scale representation based on Continuous Wavelet Anal-
ysis (CWT) presents a natural way of depicting a hierarchical
prosodic structure of a complex signal, such as speech. This
technique emerged independently in physics, mathematics, and
engineering, and is currently widely used for analysis of com-
plex signals including electrophysiological, visual and acoustic
signals [6]. The wavelets have found applications in several
areas related to speech prosody, such as robust speech enhance-
ment in noisy signals, automatic speech segmentation, and seg-
regation along various dimensions of speech signal in a similar
way as mel-cepstral coefficients [7, 8, 9].

The advantage of using this type of analysis on a range of
temporal scales is that the inherent hierarchical nature of the
signal becomes visible. The analysis not only shows how in-
formation is distributed in time, but also reveals the possible
interdependencies between the hierarchical levels. This prop-
erty has been successfully used for predicting word prominence
[10] using wavelet transform of f; signal. Recently, CWT de-

10.21437/SpeechProsody.2016-55



Continuous Wavelet Transform

T 1
[ T
=
P
i
Nt

T p%/g

A A A AR A

A~ e~

[IT]

ﬁ

.l

wavelet scale

() ) )81

1 /\”\‘/\rﬁ

made one |of twenty-three| states hert
500 1000

plebiscite. | |
1800

citizens | can | enact

1400

laws [by
1600

1200
frame (5ms)

Figure 1: CWT analysis of an fy contour of a phrase from
BURNC corpus (bottom panel). The red areas correspond to
prominent portions of speech while low (blue) areas indicate a
possible presence of a prosodic boundary.

composition of fo contour has been used to train a parametric
statistical speech synthesis system [11]. Both objective and per-
ceptual evaluation of this method explicitly targeting the inher-
ent hierarchical nature of prosody shows an improvement in fo
prediction and synthesis quality [12].

Fig. 1 shows a scalogram obtained by CWT of an fo con-
tour of an English sentence. 14 separated scales separated by
half an octave are superimposed over the scalogram heat-map.
The scales can be associated with various levels of prosodic
hierarchy, isolating syllable, word, phrase and utterance level
contributions of the prosodic signal. Peaks and valleys at each
scale correspond to predominant fy contour shape reflecting a
given hierarchical level. Like any signal, each scale can be rep-
resented in terms of its instantaneous amplitude and instanta-
neous phase which can be at any given time combined to the
instantaneous scale value.

2. Methods
2.1. Extraction of parameters, signal conversion

In this work we use four continuous prosodic features derived
from speech signal: fundamental frequency fo, gain (energy),
continuous durational parameter (derived from labeled word du-
rations) and an instantaneous speaking rate signal derived di-
rectly from the waveform using CWT.

Raw fo and energy parameters were extracted by Glott-
HMM analysis-synthesis framework [13] using Iterative-
adaptive inverse filtering to separate the contributions of vocal
tract and voice source, performing fo analysis on the source sig-
nal with autocorrelation method. Log energy is calculated from
the whole signal. Pitch range was set separately for male and
female speakers, 70-300 Hz and 120—400 Hz, respectively. Ob-
tained fo and energy parameters were interpolated using a peak
preserving method (see [14] for details).

Word durations, annotated in the analyzed BURNC corpus,
were first transformed to a continuous signal by cubic spline
interpolation of word duration values placed at mid-points of
associated word time-intervals. A time-derivative of this signal
was used as word duration parameter.

One of the objectives of this paper is to evaluate a new
method of estimating speaking rate using CWT analysis. The
existing methods typically estimate the speech rate based on
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explicit identification of syllable nuclei or boundaries. Thus,
the research has concentrated on signal representations where
the individual syllables can be robustly identified, for example
by identifying suitable spectral sub-bands and their correlations
[15] or using group delay function [16].
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Figure 2: Illustration of speaking rate extraction method. The
energy scalogram has been normalized per each frame for visual
clarity (no normalization is necessary in the method). The black
curve in the upper panel is the extracted rate signal, the curve in
the lower panel is the processed energy envelope.

In contrast, the proposed method does not attempt to iden-
tify individual syllables, but simply extracts the temporal pro-
gression of the dominant frequency in a given prosodic sig-
nal. The speech envelope is considered to have a quasi-periodic
structure with alternating peaks and valleys associated of voiced
syllable nuclei and consonantal intervals. Because this alter-
nating pattern is far from isochronous, standard Fourier-based
frequency estimation methods cannot be reliably applied. We
propose here an alternative method using CWT.

The speech signal was first lowpass filtered to 3000 Hz us-
ing Butterworth 3rd order filter, energy envelope was then ex-
tracted by taking the absolute value of the signal, and the enve-
lope was resampled to 200 Hz. Smoothing was further applied
to remove the sub-syllable phonetic detail from the resulting
signal using a Gaussian filter (the black curve at the bottom in
Fig. 2). CWT energy (square of amplitude) scalogram was then
calculated for the signal, with complex Paul mother wavelet, of-
fering a suitable compromise between frequency and time reso-
lution [17] (top panel in Fig. 2). Center of gravity of energy for
each frame — approximating the most dominant rate component
across all hierarchical levels — was used as a local speaking rate
estimate (the black curve at the top panel in Fig. 2).
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Figure 3: Prosodic feature signals used by the analyzed system,
extracted for a sentence from BURNC. From the top, fo, gate,
wavelet-based rate signal and annotation based word duration
signal. The black curve at the bottom shows a composite signal

combining fy, gain and rate features.

Fig. 3 shows examples of all four prosodic feature signals
used in this work for a sentence from the BURNC corpus.

Finally, two composite parameter signals were created by
combining fo and gain signals with, alternatively, the word du-



scale (half octave)

Phase LoMA

made Massal:huslelts one of twenty-t‘hree states ‘where citizens can enact laws by plebiscite. )
800 1000 1200 1400 1600 1800
frame (5ms)

Figure 4: An example of lines of minimum (white) and maximum (black) amplitude extracted from scalogram of a composite acoutic
feature signal. For comparison, the phase and depth methods are shown in the top and the bottom panel, respectively.

ration or speaking rate (the combined signal in Fig. 3 is an fo—
gain—rate composite). Each individual feature signal for an ut-
terance was normalized to zero mean and unity variance, and
the relevant three normalized signals were summed.

2.2. Phase and depth based boundary detection

CWT was performed on each composite signal using the second
derivative of Gaussian (Mexican hat) mother wavelet, with a
half-octave scale separation. Lines of minimum amplitude were
then estimated from the scalogram, recursively connecting scale
minima across multiple scales (see [18] for details)'.

As seen in Fig. 4, the lines of minimal amplitude (shown
in white) identify intervals where several “neighboring” scales
reach minima approximately simultaneously. This means an
inhibition of activity associated with the acoustic features un-
der analysis (lowering fo, gain and tempo) at multiple levels of
prosodic hierarchy simultaneously. As such these events sug-
gest a presence of a prosodic boundary.

Prosodic boundary is assumed to lie between speech inter-
vals (phrases) associated with a greater activity pattern, i.e., one
or more prominent speech event. These are indicated in Fig. 4
by lines of maximum amplitude highlighted in black. We have
used this insight for boundary detection. First, we use purely the
lines of minimal amplitude (i.e., connected phase resets in scale
signals) that lie between two lines of maximal amplitude. The
boundary strength is associated with the lengths of these lines of
minimal amplitude. We refer to this techniques as phase method
(top panel in Fig. 4).

In addition, the measure of boundary strength can be sup-
plemented as a cumulative depth of the line of minimum am-
plitude. Using this additional information leads to a technique
called here depth method.

IThis process uses annotated word boundaries for identification of
an appropriate world-level scale, but average of the unsupervised speech
rate could be used without loss in accuracy.
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3. Results

The boundary detection methods were evaluated on BURNC
corpus (as this corpus was also used for the state of the art meth-
ods used for baseline comparison). Almost all of the annotated
data were used for the experiment, totalling 442 stories or 29774
words. Word level break labels were derived by combining
the time aligned syllable and word labels. Manually corrected
alignments were used when available. The task was to predict
the presence or absence of boundaries with break indices 3 or
4 between any two words. Continuous valued boundary predic-
tions were converted to binary, by finding the best performing
dividing point in terms of accuracy, using random 10 % of the
data.

Tab. 1 lists the word-level results in terms of percentage of
correct detections (accuracy) as well as precision, recall and F-
score. As baselines, we report the majority class (predicting no
boundary after each word) and the unsupervised and supervised
techniques discussed in the Introduction. Using the same corpus
as the baseline studies make our results reasonably comparable
despite possible small differences in terms of the subset of the
corpus used.

The results show that the presented CWT-based method
compares favorably with the previous boundary detection tech-
niques. The depth method using word duration information ac-
tually provides higher accuracy than supervised method of [3].
Moreover, the performance of depth methods using only acous-
tic information is comparable to that of the unsupervised tech-
nique of [4] that uses explicit syllable duration as well as lexical
and syntactic information.

The depth method also performs considerably better than
the phase one. This suggests an importance of quantitative in-
formation regarding the surrounding context: boundaries are
not signaled merely by coordinating phase resets at multiple
hierarchical levels by also by the way the resets are realized,
the “depth” of the valley created by the parallel declination in
multiple signal dimensions and hierarchical levels.

Although the CWT-based rate extraction does not yield de-



Table 1: Accuracy, F'-value, precision and recall as evaluated
for all boundary detection methods described here. Baselines:
majority class and state-of-the-art supervised and unsupervised
methods.

Method (features) Acc. % F Prec. Rec.
Phase (fog) 77.1 056 0.61 0.51
Phase (fo+g+word) 83.5 069 0.73 0.64
Phase (fo+g+rate) 78.6 058 0.65 0.52
Depth (fo+g) 81.3 0.57 0.80 045
Depth ( fo+g+word) 85.7 0.72  0.80 0.65
Depth ( fo+g+rate) 82.1 058 0.84 044
Baselines (features)

Majority 72.0

Sup’d (fo+g+word) [3] 84.6 *

Unsup’d (fo+g+syll) [4] 81.1 064 0.69 0.66

*False positives rate of 9.11 % reported instead of F-value, pre-
cision and recall.

tection accuracy at the same level as explicit duration of indi-
vidual words, it nevertheless provides some improvement over
the methods using only fo and gain. It shows that although
the rate extraction uses wavelet analysis, the technique subse-
quently used again for identification of lines of minimal ampli-
tudes and boundary strength, the rate estimation as conceptual-
ized here provides additional information to the system.

Examining the discrepancies between the manual annota-
tions and the predictions based on wavelet analysis, two ten-
dencies emerge. First, the boundaries with high tones are often
not identified by the detection system, as the pitch movement
goes against our simplified assumption that acoustic features
are inhibited at phrase boundaries.

Second, there are many cases where the boundary is found,
but not in the exact location identified by annotators. The acous-
tic boundaries tend to be fuzzy; instead of an exact boundary
point, there appears to be a boundary region, sometimes span-
ning multiple syllables. In these cases, the continuous word du-
ration feature works as an effective remedy as it encodes speak-
ing rate changes in a way that highlights the (English) tendency
of placing boundaries between long content words and short
function words [19]. It is also possible that this tendency influ-
enced the annotators in the corpus in ambiguous cases.

4. Discussion

The results here show that prosodic structure can — and proba-
bly should — be studied and represented in a unified framework
comprising multiple relevant signal variables and multiple lev-
els of speech hierarchy. In particular, they indicate that phrasal
boundary detection (by automatic systems and, likely, also by
the human listeners) is assisted by phenomena linked to hierar-
chical nature of speech as revealed by CWT analysis’.

It is plausible that the boundary detection system based on
the techniques described here could benefit from incorporating
additional acoustic dimensions such as voice quality features;
laryngealization, for example, is known to be associated with
sentence and phrasal boundaries [20].

2 Although not explicitly analyzed in this work, we found that the
detection systems using the same features without CWT perform with
approximately 4 % less accuracy.
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The unsupervised wavelet-based rate estimation method,
although not performing as well as the word duration signal,
shows enough potential to warrant further analysis and develop-
ment. For example, an adapted CWT technique could be used
to extract multiple rate signals reflecting rate information at sev-
eral levels of speech hierarchy simultaneously.

The boundary detection system can also profit from another
acoustics-based speaking rate estimation methods [15, 16] or
from using different signal representations instead of the low-
pass filtered envelope used here.

Overall, our results indicate that utilizing purely acoustic
features in an unsupervised way is a viable option for bound-
ary detection. At the same time, they suggest that some degree
of top down information (such as word duration) is probably
necessary to reach detection precision achieved by supervised
systems.
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