Dutch Sentence Intonation Revisited

Philippe Martin
LLF, UFRL, Université de Paris, France
philippe.martin@linguist.univ-paris-diderot.fr

Abstract
Since the first descriptions of Dutch sentence intonation highlighting their characteristic melodic hat patterns [1], most studies in this field were undertaken using the Autosegmental-Metrical (AM) framework and the ToDI notation system, an optimized ToBI variant for Dutch [2].

In the AM approach, accent phrases are minimal prosodic units (AP), assembled to form Intonation Phrases (IP), and sequences of IPs’ constitute the Prosodic Structure (PS). AP’s are characterized by pitch accents which do not interact with each other, while IP’s are ended by boundary tones.

From the analysis of a selection of read speech recordings sampled from the Corpus Gesproken Nederlands (CGN) [3], an alternate analysis is introduced, in which pitch accents do interact with each other and indicate through dependency relations partial accent phrase hierarchical structures internal to IP’s.

Furthermore, instead of ToDI notation, prosodic events are described as melodic contours, above or below a glissando threshold [4], integrating pitch perception in the model. IP’s final pitch accent is merged with its boundary tone as a single prosodic event.

Index Terms: Dutch, prosodic structure, ToDI, glissando threshold, melodic contours.

1. Introduction
One of the first experimental analysis of Dutch sentence intonation was reported by ‘t Hart, Collier and Cohen [1]. Through validation of vocoder stylized pitch pattern perception and fundamental frequency acoustic analysis, they brought to light a characteristic hat pattern fundamental frequency.

Later, in the wave of the Autosegmental-Metrical (AM) model applied to prosodic events [2], prosodic descriptions based on the acoustic analysis of (short) sentences [5, 6] led to the development of the intonation transcription system ToDI, variant of the well-known ToBI system originally proposed for American English [7]. Numerous detailed studies using this notation system on Dutch data appeared later [8-14], describing specific phonetic and phonological characteristics of Dutch sentence intonation, such as falling-rising pitch contours, focus in declaratives, etc.

The aim of these studies is to establish a grammar of Dutch intonation, resulting from a collection of well-formed intonational prosodic events transcribed with the ToDI notation. Such a grammar assumes that minimal prosodic units are accent phrases (AP), containing only one non-epenthetic stressed syllable. As, contrary to French or Korean, Dutch is a lexically stressed language, each accent phrase usually contains one verb, one adverb, one adjective or one noun, i.e. categories of words with one stressed syllable.

In the AM view, the sentence prosodic structure results from a hierarchical assembly of AP’s to form Intonation Phrases (IP’s) whose sequence constitute the sentence prosodic structure (PS). Prosodic events located on stressed syllables, one per AP, are called pitch accents. Those located on IP’s left and right boundaries are boundary tones. In this model, pitch accents do not interact with each other, and the PS is actually defined by boundary tones (the left boundary being optional [14]). According to Gussenhoven [2], there is no intermediate intonation phrase (ip) in Dutch that would assemble AP’s in an intermediate level of the prosodic structure.

2. Another Model
Instead of analyzing a new set of data using the AM theoretical approach and the ToDI notation system, a somewhat different analysis model has been applied to a number of read speech recordings in order to evaluate its effectiveness compared to the existing studies on Dutch sentence intonation.

Starting with the same definition of accent phrases as prosodic minimal units, the prosodic structure is then defined as a hierarchical assembly of AP’s into multiple levels, the highest one being the Intonation Phrases IP. In this AP’s hierarchy forming the sentence prosodic structure, only IP’s are possibly indicated by boundary tones. The other levels are marked by specific pitch accents, possibly acting together with boundary tones at the IP level. In this view, pitch accents do interact with each other, depending on the prosodic structure complexity in terms of number of levels and the number of AP’s merged together at each level.

Another important difference pertains to the transcription of prosodic events, and particularly of pitch accents and boundary tones. Instead of considering tone targets as in the ToDI system, pitch events are transcribed as melodic contours characterized by a perception criterium based on their glissando value. Glissando values are given by the formula (s2-s1)/(t2-t1) with s1 and s2 are respectively the semitones values at the beginning and at the end of the pitch change, approximated as linear, and t2-t1 is the duration of the pitch movement. Semitones are given by $s = 12 \times \log(F0/100.0) / \log(2)$, F0 being the fundamental frequency. Values above a glissando threshold equal to k / (t2-t1)^2 with 0.16 < k < 0.32 are assumed to be perceived as melodic changes, those below as static tones at 2/3 of the pitch change. Compensation for concordant intensity change is also provided [4, 15]. Being a rough estimation, the integration of the glissando value in the annotation of melodic contours constitutes nevertheless a first approximation aiming to integrate perception in the description of melodic contours.

From these considerations, classes of melodic contours are defined a priori from the melodic movement located on the AP’s stressed vowel (and final vowel at the IP level) as follows:
- \(C_{\text{dec}} \) terminal conclusive déclarative, falling and reaching the lowest pitch value in the sentence, usually above the glissando threshold. The terminal conclusive interrogative counterpart \(C_{\text{int}} \) rising and reaching the highest pitch level in the sentence, above the glissando threshold.
- \(C_{\text{inter}} \) rising contour above the glissando threshold.
- \(C_{\text{int}} \) falling contour above the glissando threshold.
- \(C_{\text{inter}} \) neutralized contour rising or falling but below the glissando threshold.
- \(C_f \) complex contour, falling on the AP stressed vowel and rising on the final vowel and usually followed by a pause. All other contours are located on the AP’s stressed vowel.

3. Data

The analyzed corpus consists of more than 20 recordings sampled at random from a set of 565 read sentences part of the Corpus of Gesproken Nederlands (CGN) for the Dutch variety [3]. Read sentences were selected according to their apparent increasing complexity based on the number of words, and therefore of accent phrases, they contain.

Acoustic analysis was carried out with a speech analysis software dedicated to fundamental frequency analysis [16], judged preferable to the de facto standard Praat [17] for its prosodic graphic annotation functions and much better F0 tracking capabilities among other features.

The reliability of F0 curve were checked visually by displaying an underlying narrow band spectrogram whose frequency scale is aligned on the fundamental frequency scale, as shown on Fig. 1.

![Figure 1: Aligning the spectrogram and F0 frequency scales on superposed display allows an easy visual validation in case of doubtful reliability of the fundamental frequency curve.](image)

User friendly graphical commands allows to draw linear segments to approximate sections of F0, corresponding to AP’s stressed and IP’s final vowels. These segments are automatically labelled and color coded according to the definition of melodic contours given above: in this paper, final terminal \(C_{\text{dec}} \) are displayed in red, \(C_{\text{int}} \) in pink, \(C_i \) in turquoise, \(C_{\text{in}} \) in blue, \(C_{\text{inter}} \) in green and \(C_{\text{inter}} \) in brown (colors are user defined), following their glissando values compared to the glissando threshold (evaluated with the 0.16 coefficient). All contours F0 and time values of these contours can be transferred in one mouse click to a spreadsheet such as Excel® together with the corresponding intensity values.

The CGN companion files of each sound file, originally encoded in “awd” format (a variation of Praat TextGrid) using a proprietary SAMPA like phonetic coding, are automatically converted into standard IPA. Occasional errors in CGN original segmentation were corrected securing a proper alignment between stressed and final AP’s vowels with the corresponding F0 curve. Given a reliable segmentation and F0 tracking method, an automatic process for melodic contour annotation can be applied from stressed vowels location, but it has not been used here given the various recording qualities possibly affecting the reliability of F0 curves.

4. Distribution of contours and prosodic structure complexity

The strategy to discover possible regularity in the distribution of melodic contours is based on the analysis of sentences of increasing complexity in terms of accent phrases, and not directly in terms of any syntactic complexity or property. Only a few examples among few hundreds and limited to declarative cases are given here given the limited space available.

4.1. Two accent phrases

![Figure 2: [een \textit{man} \(C_{\text{int}} \) [als een schgdaw \(C_{\text{dec}} \)] “a man like a shadow”. CGN fn001001 recording.](image)

Fig. 2 shows a first case with only two accent phrases [een \textit{man} \(C_{\text{int}} \) [als een schgdaw \(C_{\text{dec}} \)] “a man like a shadow”. Accent phrases are specified in square brackets and stressed vowels are marked in bold underlined characters. The first stressed vowel carries a rising contour \(C_{\text{in}} \) above the glissando threshold aligned on the stressed vowel of the \textit{een \textit{man} AP}. The second AP stressed vowel of \textit{als een schgdaw} carries a \(C_{\text{inter}} \) terminal conclusive contour. The four annotation tiers show respectively the segmentation in words, orthographic and IPA transcription, the segmentation in phones and in melodic contours.

![Figure 3: [\textit{zin hoojfi} \(C_{\text{in}} \) [\textit{bankit} \(C_{\text{dec}} \)] “His head is pounding”. CGN fn001001 recording.](image)

Fig. 3 is a variant of the two AP’s prosodic structure, illustrating the neutralization of the first melodic contour \(C_{\text{in}} \) below the glissando threshold. Indeed, the first accent phrase contour has to be differentiated only from another terminal contour \(C_{\text{dec}} \) or \(C_{\text{int}} \) contours which would encode two PS and two independent sentences. Therefore, this first contour can be realized as a \(C_{\text{in}} \) or a \(C_{\text{in}} \), excluding the rarely attested falling contour \(C_{\text{int}} \) that could be confused with the terminal contour \(C_{\text{dec}} \).
4.2. Four accent phrases

Fig. 4 shows a prosodic structure assembling four AP’s as follows: [[een fietsbel Cneo] [rinkelend Cbas]] [[in de avond Cbas] [schemerend Cbas]], not congruent with syntax, but more eurhythmic than a congruent version, which would be [[een fietsbel] [rinkel in de avond schemering]]. Although *avondschemering* is orthographically rendered in one word, it possesses two stressed syllables and therefore determines two accent phrases. As in the example of Fig. 3, the first and third contours are neutralized into Cnes.

![Figure 4: [[een fietsbel Cneo] [rinkelend Cbas]] [[in de avond Cbas] [schemerend Cbas]] “a bicycle bell rings in the evening twilight lit” CGN fn001001 recording.](image)

The next figure (Fig. 5) gives another example of a symmetric expansion in 2 levels of [[dan pakten Cbas] [ze glijden Cbas] [[en kop Cbas] [kaafje Cbas]]], followed with a theme sequence in a Rheme-Theme organization of the sentence characterized by neutralized contours Cnes located on each stressed vowel.

![Figure 5: [[dan pakten Cbas] [ze glijden Cbas] [[en kop Cbas] [kaafje Cbas]] [[verder gaat Cbas]] “Then she always takes a cup of coffee so that she continues her work”. CGN fn001020 recording.](image)

4.3. A flat sub-prosodic structure

![Figure 6: [[Een kaal Cbas] [gebouw Cbas] [van Gruwe Cbas] [steen Cbas]] [[zo bouwen Cbas ze hier na eeuwenald Cbas het kraft Cbas]] “They simply love to build a bare gray-stone building here”. CGN fn001019 recording.](image)

4.4. Enumeration pattern

The falling contour Cfal is mostly found after Cfas as a marker of a tight relation between the AP’s involved, as found for example, in Fig 7, in the group [[beste Cfas resulatief Cfas]] Also, the three first AP’s are forming a list with the same Cfas contours.

![Figure 7: [[Voor elk Cfas] [gerecht Cfas] [in dit boek Cfas]] “This book contains the best, the best, the best! Cfas resulatief Cfas]” Each dish in this book uses the chicken part that guarantees the best result”. CGN fn001015 recording.](image)

4.5. Rise-Fall pattern

Another example of the rise-fall Cfas Cfal configuration is given Figure 8. The two accent phrases involved are paart and minuten, indicating a close relationship between words, similar to those found in compound words.

![Figure 8: [[Hij had Cfas] [nog meer Cfas] [een paar Cfas] [minuten Cfas]] “He had walked a few minutes more”. CGN fn001044 recording.](image)

4.6. Rise-Neutral-Fall pattern

The rise-fall configuration Cfas Cfal can be expanded into 2 levels as Cfas Cneas Cfas (Figure 9), indicating a two-level hierarchy [[een ascetische Cfas] [[aan dse Cfas] [groep Cfas]]].

![Figure 9: [[een ascetische Cfas] [[aan dse Cfas] [groep Cfas]] [[die zich Cfas] [de Therapeutae Cfas] [naandie Cfas]] “an ascetic Jewish group who called themselves the Therapeutae”](image)
4.7. Saturation pattern

Fig. 10 is an example where the melodic contour system runs out of feature contrasts to be congruent with syntax, leaving the realization of stressed syllables to \(C_{\text{con}} \) for [anopprong] and [van dege] AP's: "een belangrijke oorsprong van deze manier van denken".

Figure 10: A case of saturation of the prosodic expansion for the group [een belangrijke oorsprong van deze manier van denken] is de ideeëleer van Plato “an important origin of this way of thinking is Plato’s theory of idea”. CGN fn001019.

Figure 11: The partial PS for the example of Figure 10, non-congruent to syntax due to the exhaustion of available feature contrasts, leading to the use of a neutralized contour for [oorsprong] and [van dege] AP’s. However, a supplementary feature +/. High could be considered to differentiate the two neutralized contours, both below the glissando threshold.

4.8. More complex sentences

The next example Figure 12 shows a more complex sentence organized into 3 IP’s, the two firsts ended with \(C_{\text{con}} \) and the last one by \(C_{\text{con}} \) [er zijn zoveel verschillende manieren om kipfilets te bereiden ikvoor de icoon] [dat ze probleemloos meerderen lezen per week op het menu kunnen zorgen ikvoor ikvoor de icoon] [anders dat ik voor de icoon of voorspelbaar worden ikvoor de icoon]. The two first IP’s contain a two levels sub-prosodic structure indicated by the sequence of contours \(C_{\text{con}} \) \(C_{\text{con}} \) \(C_{\text{tal}} \): [zoveel] \(C_{\text{tal}} \) [verschillende \(C_{\text{con}} \) [manieren \(C_{\text{tal}} \)] and [meerdere \(C_{\text{tal}} \) [lijk \(C_{\text{con}} \) per week \(C_{\text{con}} \)]].

Figure 12: A more complex sentence with the first two IP’s are ended by \(C_{\text{con}} \) and the last two IP’s by \(C_{\text{con}} \).

4.9. Minimal and sufficient feature contrasts

Fig. 13 illustrates an application of the minimal and sufficient contrasts principle. The two first IP’s [kipfilets hebben een grote voedingswaarde] and [zijn op allerlei manieren toe te passen] contain AP’s with \(C_{\text{con}} \) so that their final contour must be complex to ensure a proper contrast. However, the two next IP’s [zijn voordeelig] and [makkelijk [te bereiden]] can only have a \(C_{\text{con}} \) which is sufficient, the first one with a single AP and the second IP’s having only a neutralized contour.

Figure 13: [kipfilets hebben een grote voedingswaarde] [zijn op allerlei manieren toe te passen] [zijn voordeelig] [makkelijk [te bereiden]] “chicken fillets have a high nutritional value / can be used in all sorts of ways / are inexpensive to prepare and everyone likes them”. CGN fn001019.

5. Discussion

Some points of the model presented here may be sometimes subject to interpretation in their application:

1. Melodic contours are aligned on vowels which may be problematic to validate as belonging to syllables known to be effectively stressed. This is frequently the case with compound words, such as kipfilets or kipfilets? avondschepering or avondschepering?

2. The glissando threshold determines the class of rising or falling contours as neutralized, i.e. not perceived as a melodic change. However, in the literature, this threshold was established from perception tests conducted on a unique synthesized vowel [a]. The coefficient 0.16 used in the formula vary sometimes up to 0.32 to take this uncertainty into account [15].

Other than that, the role of accent phrase pitch accent as marker of an Intonation Phrase sub-structure appears clearly, once they are described not as tone targets but as melodic contours.

6. Conclusion

An alternate phonological analysis of Dutch intonation is presented, using an approach totally different from the current autosegmental-metrical model using ToDI notation:

1. Prosodic events located on stressed vowels are described by melodic contours characterized by their glissando value and not by tonal targets.

2. Melodic contours define dependency relations between accent phrases, whose grammar define the prosodic structure eventually in more than one level.

Among other benefits, this alternate model provides coherent explanations for melodic contour neutralization in the framework of a prosodic grammar involving dependency relations totally independent from syntax.
7. References

