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Abstract
Motivated by theories of early language development in chil-
dren we investigate the contribution of affective features to
early acquisition of lexical semantics. For the task of seman-
tic similarity between words, semantic and affective spaces are
modeled using network-based distributed semantic models. We
propose a method for constructing semantic activations from
a combination of lexical and affective relations and show that
affective information plays a prominent role in our lexical de-
velopment model.
Index Terms: early lexical acquisition, distributional semantic
models, semantic-affective models

1. Introduction
Computational models of lexical semantics can construct se-
mantic representations for linguistic units ranging from words
(word embeddings) to sentences and beyond. Distributional se-
mantic models (DSMs) have revolutionized the way we repre-
sent meaning. Traditional DSMs deal with high-dimensional
spaces exploiting patterns of word co-occurrences extracted
from text corpora [1]. Such spaces can be further pro-
cessed for creating embeddings with desired properties, e.g.,
low-dimensional dense representations [2, 3]. Despite recent
progress in various semantic tasks (e.g., semantic classification,
similarity computation) these models are fundamentally differ-
ent from humans regarding the acquisition of word semantics
[4]. Children are capable of inferring the meaning of new (un-
known) words even from few examples [5, 6], while DSMs are
not robust with respect to data sparsity. Inferring the semantics
of words and their relations based on few or no in-domain data
is an example of one-shot or zero-shot learning (e.g., see [7]),
which is the focus of the present work. DSMs being robust to
data sparsity enable the development of semantic modules in
the framework of human-child interaction where the system has
to be grounded in the contextual environment that is likely to
include unknown objects.

DSMs have been criticized as “ungrounded”, since they rely
solely on linguistic information ignoring features from other
modalities and experiential information that are related to the
acquisition of semantic knowledge. This is also referred to as
the symbol grounding problem [8]. Experimental findings in-
dicate that real-world experiences also play a role for the ac-
quisition of lexical semantics [9]. For example, [10] suggests
that language acquisition is (also) grounded on communication
episodes where partners exchange feelings.

The key hypothesis of this work is that the affective con-
tent of words can facilitate the acquisition of lexical semantics
in the early stages of first language acquisition. The compu-
tational framework used here is a two-tier system, motivated
by cognitive considerations such as lexical/affective activations
and priming, where a target word facilitates the cognitive pro-

cessing of another [11, 12]. In tier I, local network areas (sub-
spaces) are activated, triggering a number of attributes that are
(semantically/affectively) related with the target. We exploit
both lexical and affective activations, as well as their fusion, for
computing semantic similarity between words. In tier II, we op-
erate on the semantic/affective activations of words to estimate
semantic similarity. We set-up our experiments to simulate data
sparsity conditions that roughly correspond to early acquisition
by humans, namely, networks of small sizes, and availability of
few examples for the target (unknown) words.

The rest of this paper is structured as follows. Related work
is briefly discussed in Section 2. In Section 3, we present the
lexical and affective features used for the creation of activations,
while in Section 4, we present the activation-based computa-
tional model used in our analysis. The experimental data and
settings are provided in Section 5, and the evaluation results are
reported in Section 6. Section 7 concludes this work.

2. Related work
Vocabulary growth has been studied extensively in the lin-
guistic and computational literature. The rate of lexical ac-
quisition is not linear: there is a sudden surge in the rate of
learning new words, especially nouns known as the “vocab-
ulary spurt” or “naming explosion”. Over the last 15 years
a number of computational models have been used to model
the vocabulary spurt pheonomenon on the basis of factors such
as: associative learning, selective attention, rational inference
([13, 14, 15, 16]). There are few computational models based
on the socio-pragmatic approach using intentions and feelings
as input, e.g., [17, 18] in infant word learning.

Word-level representations constitute the core of DSMs
typically constructed from co-occurrence statistics of word tu-
ples. Word-level DSMs can be broadly categorized into unstruc-
tured and structured with respect to the extraction of contextual
features. A comparison can be found in [19]. The bag-of-words
model is a widely approach for the extraction of such contextual
features (e.g., see [20]) based on word co-occurrence patterns.
Recently, the computation of contextual features was posed in a
learning-based framework where the goal is to estimate the con-
text in which the words of interest are expected to occur [2, 3].
A comparison of this advancement with traditional DSMs is dis-
cussed in [21] for several tasks of lexical semantics. Word-level
representations are the building blocks for phrase- and sentence-
level models [22, 23] motivated by the principle of semantic
compositionality [24]. A research direction that aims to allevi-
ate the lack of grounding in DSMs deals with the incorporation
of features from modalities other than text in order to augment
the text-based DSMs, e.g., see [25] for image-derived features,
and for audio-based features [26].

Based on the key hypothesis of the present work, in this
paragraph a brief overview of affective text analysis is pre-

6th Workshop on Child Computer Interaction (WOCCI 2017)
13 November 2017, Glasgow, Scotland, UK

40 10.21437/WOCCI.2017-7



sented. Text can be analyzed for estimating affect and sentiment
at different levels ranging for single words to entire sentences.
Relevant applications include polarity recognition and opinion
mining in domains such as product reviews [27] and tweets [28].
A mapping from semantic to affective spaces was proposed in
[29], enabling the estimation of the continuous affective scores
for unknown words. The mapping was based on the affective
ratings of a given small set of words (seeds) and the seman-
tic relatedness between the unknown and the seed words. An
extension of this approach was proposed in [30] for computing
sentence-level affective scores. The semantic-affective mapping
was expanded in [31] for estimating scores for other dimen-
sions, such as word familiarity and age acquisition. An example
of the exploitation of affective spaces for semantic tasks can be
found in [32] dealing with the detection of semantic opposition.

3. Lexical and affective features
The underlying assumption of this work is that the affective con-
tent of words can facilitate the acquisition of lexical semantics.
This is investigated via the exploitation of lexico-semantic and
affective spaces, which are constructed by employing the simi-
larity metrics presented in Section 3.1 and 3.2, respectively.

3.1. Semantic similarity metrics

Numerous metrics have been proposed for the estimation of
semantic similarity between words (a more detailed analysis
can be found here [33]). In this work we utilize corpus co-
occurrence statistics and, specifically, the Dice coefficient D
metric defined as follows

D(wi, wj) =
2 · |M ;wi, wj |
|M ;wi|+ |M ;wj |

(1)

where |M | is a set of all sentences in a corpus and
|M ;wi, ..., wi+n| stands for the number of occurrences of
words wi, ..., wi+n within |M |. The use of the co-occurrence
metrics is motivated by experimental findings suggesting that
lexical co-occurrences stand as salient cues for the early acqui-
sition of word semantics (e.g., see [34]).

3.2. Affective similarity metrics

A word w is characterized regarding its affective content in
a continuous (within the [−1, 1] interval) space consisting
mainly of three dimensions (affective features), namely, va-
lence, arousal, and dominance. This model that was first pro-
posed by [30] and enhanced by [35] relies on the assumption
that given some metric of similarity between two words, one
may derive the similarity between their affective ratings. For
each dimension, the affective content of w is estimated as a lin-
ear combination of its semantic similarities to a set of N words
with known affective ratings, referred as seed words, as follows.

υ̂(w) = α0 +
N∑

i=1

αiυ(ti)S(ti, w), (2)

where t1...tN are the seed words, υ(ti) is the affective rating
for seed word ti with u denoting one of the aforementioned
dimensions, αi is a trainable weight corresponding to seed ti
and S(·) stands for the semantic similarity metric (see Section
5.3.1) between ti and w.

4. Network-based model
Here, we provide a brief overview of the used computational
framework [32], which consists of two layers. The first one is
the activation layer that includes the words that are semanti-
cally/affectively related to target word w. It is computed ac-
cording to the metrics defined in Section 3. The second layer
is referred to as the similarity layer, and it is used for the com-
putation of similarity between words based on their activations
created in the previous layer. The proposed network can be rep-
resented as an undirected graph, whose set of vertices include
the words under investigation and the set of edges contain links
between the vertices. The links between words (nodes) in the
network are determined and weighted according to their pair-
wise (lexical or affective) similarity metrics defined in Section
3.

Figure 1: Example of semantic activations representing words
“book”,“library” when the number of examples encountered
for the word “library” in the corpus is increased from (a) 5 to
(b) 50.

4.1. Layer 1: Activation models

Lexical activations (Lw): The computation of the lexical
activation model is motivated by semantic priming [11]. Given
a target word w, the members of Lw are the n most similar
words to w. Any metric of semantic similarity can be applied.
In this work, we used the word co-occurrence metric defined in
(1).

Affective activations (Aw): The affective activation of a target
word w is motivated by affective priming [12]. The members
of Aw are selected according to a metric of affective similarity
(see Section 3.2) i.e., the nmost similar words tow are selected.

Lexical and affective activations (Fw): We assume that both
semantic and affective activations are triggered given lexical
stimuli, e.g., the target words for which similarity is computed.
Also, we further hypothesize that both activation types, Lw and
Aw, can be fused rather being exploited independently. Here,
we adopt a fusion scheme proposed in [36] for computing the
activation Ni(n) of a target word wi: that is defined as follows:

FNi(n)
w = f(Q(wi, Li(|H|)), Q(wi, Ai(|H|));n) (3)

whereQ(wi, Li(|H|) andQ(wi, Ai(|H|)) stand for the vectors
including the semantic and affective similarity scores between
target wi and the members of Li(|H|) and Ai(|H|), respec-
tively. H is the largest possible semantic/affective activation.
f(.) stands for a function that computes the maximum element-
wise value, i.e., for each lexicon entry and the target wi the
respective maximum semantic or affective similarity score is
selected. Before applying the maximum element-wise function
the two feature vectors are aligned and normalized. The f(.)

41



Network size

50 100 250 500 1000 2000 3000 5000

C
o

r
r
e
la

ti
o

n

0

0.1

0.2

0.3

0.4

0.5 lexical

affect

lexical+affect

(a) 5 instances

Network size

50 100 250 500 1000 2000 3000 5000

C
o

r
r
e
la

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

lexical

affect

lexical+affect

(b) 50 instances

Figure 2: Correlation for word similarity computation as a function of network size for different number of instances (for n = 40). The
words of network were selected with respect to the estimated age of acquisition (from early to late).

fusion function results in a single vector of size |H| from which
the n top-ranked values are considered as members of the acti-
vation Ni(n).

4.2. Layer 2: Similarity layer

In this layer, the semantic similarity between pairs of words is
computed based on their respective activations. We follow a
similarity metric proposed in [32] that was motivated by attri-
butional similarity suggesting that semantically similar words
are expected to exhibit correlated similarities with respect to af-
fective or lexical features. Given two words, wi and wj , which
are represented by their activations, Ni and Nj , their semantic
similarity is defined as follows:

Rn(wi, wj) = max{bij , bji} (4)

where bij=ρ(CNi
i , CNi

j ), bji=ρ(C
Nj

i , C
Nj

j ), Ni={x1, ..., xn}
and CNi

i =(S(wi, x1), S(wi, x2), ..., S(wi, xn)). The ρ is the
Pearson’s correlation coefficient, Ni refers to the activation of
wi and S(.) is a semantic similarity metric. The vectors CNi

j ,

C
Nj

i , and CNj

j are computed similarly to CNi
i . The activations

utilized in (4) are assumed to include semantic attributes
(properties) of the words of interest wi and wj . Such attributes
have been suggested to play an important role during the early
acquisition of word meaning (for example, see [37, 38])

5. Experimental data and settings
In this section, we present the experimental setup for the pro-
posed activation models.

5.1. Corpus and evaluation dataset

We defined a vocabulary, V , consisting of 8752 English nouns
extracted from the SemCor3 corpus. For each entry of the vo-
cabulary, a query was submitted to a web search engine and the
snippets of the 1000 top documents were downloaded [39]. The
retrieved snippets were aggregated for creating a text corpus.

The performance of the activation-based similarity metric
defined in (4) was evaluated for the task of semantic similar-
ity computation between nouns. For this purpose, we used a

subset1 of the MEN dataset [25] consisting of 684 pairs. The
Pearson’s correlation coefficient between the automatically es-
timated similarities and the human ratings (ground truth) was
used as evaluation metric.

5.2. Sparsity

Unlike computational methods such as DSMs, the real-life ac-
quisition of lexical semantics is performed by the exploitation
of very few word examples in an incremental fashion [40]. The
following scenario was adopted in order to simulate the afore-
mentioned process. Consider a pair of words, wi and wj , for
which the semantic similarity is to be computed. We assumed
that for a member of the pair (randomly selected) few examples
(i.e., sparsity) were available in the used corpus. For this pur-
pose, we performed appropriate corpus decimation (also ran-
dom). Under this condition, we created lexical and affective
activations, as well as their fusion as described in Section 4.1.
Based on these activations we computed the semantic similarity
between wi and wj according to (4). We experimented with a
varying number of instances. For each number of instances, the
entire process (i.e., from corpus decimation to similarity com-
putation) was repeated ten times. The performance is reported
in terms of average correlation taking into account the correla-
tion scores that were achieved for each of the ten runs.

In Figure 1, we present the fused (lexical and affective) ac-
tivations of book and library which can be exploited according
to (4) for computing their similarity. In this example, we as-
sume that a child already knows the word book but has only
heard the word library a limited number of times. For this ex-
ample, the word library is encountered five (Figure 1(a)) and
50 times (Figure 1(b)) in our network-based model. In the case
of Figure 1(a), the activation of library includes words that are
moderately related with it. The semantic similarity of library
and the members of its activation is enhanced for the case of
Figure 1(b). For this case the similarity score between book and
library is expected to be more accurate compared to the former
case.

1We used those words included in the vocabulary of 8752 nouns.
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5.3. Activations and network filtering

In this section, we briefly present the parameters of the experi-
mental model.

5.3.1. Activations

The following are the parameters used for the construction of
lexical/affective activations:

1. Network size: the number of words that consti-
tute the network. We report results for H =
{50, 100, . . . , 5000}.

2. Number of instances used for investigating sparsity as
mentioned in Section 5.2. In the reported experiments
we used k = {3, 5, . . . , 100}.

3. Activation size: number of words included in the activa-
tion layer defined in Section 4.1. We experimented with
n = {10, 20, ..., 100}, however, here we report results
only 2 for n = 40.

For the creation of affective spaces, (2) was applied relying
on the ANEW lexicon [41] as proposed in [30]. Cosine sim-
ilarity was applied for the computation of S(·) that appears in
(2) using DSMs. The affective similarity between two words,
wi and wj , was computed as the cosine similarity over the
three-dimensional (valence, arousal, dominance) space. For the
activation-based similarity metric shown in (4), as S(·) we used
the co-occurrence-based metric defined by (1).

5.3.2. Network filtering

The largest size of the network equals to |V | words (see Section
5.1). We experimented with varying network sizes, considering
the following criteria for selecting a subset of vocabulary V of
H size:

1. Corpus frequency.

2. Familiarity, i.e., the degree of exposure to and knowl-
edge of the word.

3. Age of acquisition, i.e., the expected age at which one
acquires the word.

For each word of the vocabulary the aforementioned scores
were computed. The computation of familiarity and age of ac-
quisition scores was performed according to the approach pro-
posed in [31].

6. Evaluation results
In Figure 2, we present Pearson correlation as a function of the
network size for activation size n = 40. This is shown for dif-
ferent number of instances, namely, five (Figure 2(a)) and 50
instances (Figure 2(b)). The words that were included in the
network were selected with respect to the earlier age of acqui-
sition. The performance is shown for both lexical, Lw, and af-
fective activations, Aw, as well as for their fusion Fw denoted
as lexical+affective. The main observation is that the model
based on affective activations outperforms the lexical model for
small network sizes (< 1000) regardless of the number of in-
stances used. Also, the proposed fusion of lexical and affective
activations yields performance that is higher (or equal) to the

2Due to space limitations. The results are consistent for other values
of n.
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Figure 3: Correlation of affect+lexical (fusion) as a function
of number of instances shown various network filtering criteria
(for n = 40 and network size equal to 250).

best individual model. Specifically, approximately 0.50 corre-
lation3 is achieved for networks consisting of 2000 words when
50 instances are used (see Figure 2(b)).

In addition, we investigated the role of the network selec-
tion method as a function of the number of instances used. This
is shown in Figure 3 for the fusion-based model using a net-
work of 250 words and activation sizes n = 40. The perfor-
mance is shown for three selection methods according to word
scores dealing with corpus frequency, familiarity, and the ear-
lier (younger) age of acquisition. In the same plot, we also
present the performance for the random selection of network
words. Slightly higher correlation is achieved by the method
based on age of acquisition compared to the rest methods for up
to 20 instances. As the number of instances increases, familiar-
ity and corpus frequency tend to yield higher correlation than
the other methods.

7. Conclusions
We investigated a computational framework motivated by cog-
nitive considerations, namely, network activations and seman-
tic/affective priming. This was applied to the computation of
semantic similarity between words. We focused on sparsity
conditions that roughly model to the early acquisition of lexical
semantics namely, networks of small sizes, and few examples
for the words of interest. The key finding is that the exploita-
tion of affective activations facilitates the acquisition of lexical
semantics for small networks. In addition, we found that the
fused lexical and affective activations outperform the respective
individual models.

Future work will deal with the investigation of more fusion
schemes. Also, we plan to fuse the affective activations with ac-
tivations created by other modalities other than text, e.g., using
visual and acoustic features and similarity metrics. Last but not
least, we aim to further verify the universality of the presented
models using datasets in other languages.
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