Speech and Language Technology in Education (SLaTE2007)

The Summit Inn, Farmington, PA, USA
October 1-3, 2007

A Combined Method for Discovering Short-Term Affect-Based Response Rules for Spoken Tutorial Dialog

Tasha K. Hollingsed, Nigel G. Ward

Department of Computer Science, University of Texas at El Paso, TX, USA

A good tutoring system should be able to detect and respond to subtle changes in the affective state of the learner, as a way to motivate and encourage the student, thereby improving the learning outcomes. This responsiveness should also operate at the sub-second timescale, as with some human tutors. Modeling this ability is, however, a challenge. This paper presents a combined method for the discovery of the rules governing such real-time responsiveness. This method uses both machine-learning and perceptual techniques, both with and without reference to internal states. This method is illustrated with the problem of choosing supportive acknowledgments in memory-reinforcing quiz dialogs. A wizard-of-oz experiment showed that users prefer a tutorial system based on responsive rules to one that chooses acknowledgments at random.

Full Paper

Bibliographic reference.  Hollingsed, Tasha K. / Ward, Nigel G. (2007): "A combined method for discovering short-term affect-based response rules for spoken tutorial dialog", In SLaTE-2007, 61-64.