ARTICULATORY SYNTHESIS OF FRICATIVE CONSONANTS: DATA AND MODELS

P. Badin, K. Mawass, G. Bailly, C. Vescovi, D. Beaufre, & X. Pelorson

Institut de la Communication Parlée
UPRESA CNRS 5009, INPG - Université Stendhal
46, Av. Félix Viallet, F-38031 Grenoble Cedex 01, France
Email: badin@icp.grenet.fr - Fax: (33) 76.57.48.26

Résumé

Ce travail vise à démontrer la faisabilité d'une synthèse articulatoire de haute qualité pour les consonnes fricatives, en particulier en imitant un sujet de référence. Le synthétiseur comprend un modèle articulatoire basé sur des images ciné-radiographiques du sujet, et un modèle aérodynamique simplifié. Deux approches ont été tentées: la synthèse articulatoire par copie directe, et la synthèse par inversion à partir de l'acoustique. La coordination entre les articulateurs supralaryngés et laryngés a été déterminée de manière quasi-automatique, à partir de données aérodynamiques complémentaires. Un ensemble d'exemples spatio-temporels a été construit, et devrait servir à établir des patrons sensori-moteurs pour la synthèse.

Abstract

The present work aims at demonstrating the feasibility of high quality articulatory synthesis for fricative consonants, and in particular to match a given reference subject. The synthesiser includes an articulatory model based on cineradiographic pictures of the subject, and a simplified aerodynamic model. Two approaches have been used: direct articulatory copy synthesis, and copy synthesis by acoustic-to-articulatory inversion. Coordination between supralaryngeal and laryngeal articulators has been quasi-automatically determined, based on supplementary aerodynamic data. A set of VFV spatio-temporal exemplars has finally been built, and should serve to establish sensory-motor templates for synthesis.

Introduction

We believe that articulatory synthesis is a promising approach to speech synthesis, because its anthropomorphic nature allows to adapt, in a coherent fashion, the synthesis strategies to the environmental conditions. The present work aimed thus at demonstrating the feasibility of high quality articulatory synthesis for fricative consonants, and in particular the possibility to match a given reference subject. This study relies on two complementary approaches, namely direct articulatory copy synthesis and inversion. It involves articulatory-aerodynamic-acoustic data on the one hand, and relevant models on the other hand.

1. The articulatory-aerodynamic-acoustic data and the articulatory synthesiser

A reference subject uttered the same small French vowels, and VCV sequences of voiced plosives and fricatives in different setup conditions (cf. Badin et al., 1995a, b). Midsagittal contours were obtained by cineradiography, in synchrony with front views of the lips recorded by video. The low frequency components of both volume velocity at the lips U and intra-oral pressure ΔPc were recorded in a different session by means of a Rothenberg mask, and the minimal oral constriction area Ac_aero was determined by the orifice equation. Formant trajectories were also determined by carefully hand-editing poles extracted from LPC coefficients.

B e r g a m e , the ICP articulatory synthesiser was developed based on these data (Beaufre et al., 1996). The first module is a physiologically-oriented statistical articulatory model, basically driven by eight parameters: jaw height JH, lip height LH and protrusion LP, tongue advance TA, body TB, dorsum TD and tip TT, and larynx height LY. The second module is a model of passage from the midsagittal function to the area function, also optimised on the same data (Beaufre et al., 1996). Finally, the resulting sound is produced by a time-domain reflection-type line analogue (Bailly et al., 1994), excited by an improved two-mass model of the vocal folds (Vescovi et al., 1995), and a newly developed noise source for fricatives (Badin et al., 1995b). The noise source is controlled by the low frequency component of the pressure drop ΔPc at the oral constriction and by the aerodynamically equivalent constriction area Ac (either the
minimal constrict area in the tract A_C [excluding the larynx and the lips], or the lip area A_L).

A simplified aerodynamic model, valid at low frequencies (below approximately 100 Hz) considers the vocal tract as two constrictions: the glottis and the oral constriction. Bernouilli and Poiseuille equations are used to express ΔP_C as a function of A_C, and the pressure drop ΔP_g across the glottis as a function of A_g, where A_g is the low-frequency component of the glottal area determined in the two-mass model. The subglottal pressure P_s is then equal to the sum of ΔP_g and ΔP_C.

The articulatory synthesiser is globally controlled by two sets of articulatory parameters: supralaryngeal parameters (i.e. the command parameters of the articulatory model), and laryngeal parameters controlling the vocal folds (subglottal pressure P_s, vocal folds length L_g, glottis rest height H_0), that need to be carefully coordinated.

The aim of the present study being to replicate natural VVF fricative sequences, two main strategies were explored, concerning the supralaryngeal articulators: direct articulatory copy synthesis, and acoustic-to-articulatory inversion. These approaches are described in the following sections, as well as the method employed to establish the supralaryngeal–laryngeal coordination.

2. Direct articulatory copy synthesis

This strategy consisted in mimicking the subject’s articulation as closely as possible by direct measurements. Five of the parameters were thus directly measured on the contours: JH, LH, LP, TA, and LY. The other three tongue parameters, TB, TD and TT, were obtained by a pseudo-inversion of the matrix that predicts the coordinates of the tongue contour as linear combinations of them (Badin et al., 1995a). Finally, midsagittal profiles, and then area functions were computed from these parameters, using the articulatory model.

This strategy is limited to the reproduction of the items of the initial corpus (8 vowels, 3 voiced fricatives in 6 vocalic contexts). It serves the purpose of assessing how close the whole model chain is to the reference subject. An evaluation can be found in Beaufretemps et al. (1996). In particular, the square root of the quadratic errors on formants are respectively 49, 130, 145 and 200 Hz for F_1, F_2, F_3 and F_4, which is a quite reasonable fit.

This shows that the articulatory synthesiser fits fairly well the characteristics of the reference subject and provides a good basis for further studies.

3. Copy synthesis by acoustic-to-articulatory inversion

We resorted to an inversion method, in order to overcome the limitations of direct copy synthesis, and to be able to mimic any sequence for which only the radiated sound would be available (possibly including lip parameters and aerodynamic measurements). The articulatory parameters were thus determined from measured formant trajectories, and from the specification of some geometrical parameters, by means of a classical gradient descent method (Jordan, 1990): the algorithm aims at minimising the distance between the $distal$ parameters (formants and geometric parameters) by finding the best $proximal$ parameters (the command parameters). A forward model of the articulatory model was thus established: each of the four formant frequencies in a dictionary produced with the direct model, was modelled by a separate fourth order polynomial function of the eight articulatory parameters (Morris, 1992); similarly for the two geometrical parameters, i.e. A_C and A_L.

The error to minimise is the weighted sum of (1) the quadratic distances between the six distal parameters (formants are expressed in $barks$, areas are saturated by $arctg$ functions) and the measured parameters (actually, the distance is a parabolic function on each side of a $don’t$ care range where it is set to zero, limited by minimum and maximum target values), for all the frames in the sequence, and (2) the jerk of the proximal parameters.

As speech production involves simultaneously different spaces, i.e. the articulatory, geometric, aerodynamic and acoustic spaces, a trend toward a multi-layered representation of speech is developing (cf. Bailly, 1996). In particular, it is clear that vowels are more precisely and economically represented in terms of formants, whereas consonants are better represented in terms of place and degree of constriction/closure. Therefore, in our inversion procedure, we specified vowels in terms of formants, letting the A_C and A_L parameters practically unspecified. On the other hand, the fricatives were coded in terms of degree of constriction: the upper limit of A_C or A_L was set to a high value (typically 1-5 cm2) for vowels, and to 0.15 cm2 for fricatives, while the lower limit was set to 0.05 cm2 in order to avoid complete closure. Boundaries between vowels and fricatives were determined from the sound pressure level at the lips by appropriate thresholding, using the fact that the energy of the vowels is much higher than that of the consonants. The transitions
between these two different targets were shaped by gaussian functions.

High quality sound signal was then recorded by the reference subject for a corpus extended to all the combinations of French vowels contexts with [i a u y], and the articulatory parameters were inverted. Fig. 1 shows that, in the case of [azi], the recovered formants F1 and F2 fit the measured ones very well, while recovered formants F3 and F4 display more discrepancies; these discrepancies can, for a great part, be ascribed to the fact the forward model does not always fit the direct model very well; this is particularly the case of articulations with a rather high degree of constriction, where the relation between articulatory parameters and constriction size is highly non linear since the constriction can collapse into complete closure. The oscillations visible in the vowel [i] can likely be attributed to this type of problem as well. This problem should be solved by using the direct model to estimate the errors between distal parameters and the corresponding targets. Fig. 1 shows also that A_c follows well the imposed constraints; however, it has been noticed that the constraint of a low A_c in the fricative is not always needed, as this constraint is already ensured by the low F1 (F1 is very much related to A_c, since it is mainly determined by the Helmholtz resonator constituted of the constriction and of the cavity behind it).

The results shown in Fig. 1 are confirmed by the vocal tract contours of Fig. 2, that shows that the coarticulatory effects of the vocalic context on the fricative are well recovered for [aza] and [azi], and with some compensation for [azu] (the jaw is a little higher and the tongue tip more retracted, eventhough formants targets are reached).

4. Determination of supralaryngeal–laryngeal coordination

Once the trajectories of the supralaryngeal articulators are obtained, by either direct copy or inversion methods, it is needed to infer the laryngeal commands that will determine the behaviour of both voice and noise sources. As inversion from the sound itself is still difficult (Vescovi et al., 1995), it has been decided to resort also to copy synthesis, and thus to use the aerodynamic parameters recorded in another session in order to determine PS, LG and H0 (Mawass et al., 1996). Subglottal pressure was assumed constant throughout the VFV sequence, and estimated as the intra-oral pressure during the [p] inserted on each side of the sequences. As the relative accuracy of the midsagittal distances in the vicinity of the constriction is limited (Beautemps et al., 1996), the aerodynamically equivalent constriction area $A_{c\text{areo}}$ was used for the control or the aerodynamic model, in place of the minimum constriction area $A_{c\text{x}}$ extracted from the area functions. A gaussian function centred around the middle of the fricative was used to merge $A_{c\text{areo}}$ and $A_{c\text{x}}$, so as to force $A_{c\text{areo}}$ to follow $A_{c\text{x}}$ during the fricative portion, while avoiding any discontinuity at the boundaries with the adjacent vowels. Finally, using the simplified aerodynamic model, the low frequency component of A_g,

![Fig. 1 - Formants (left), constriction area $A_c\text{|}$ (top right) and articulatory parameters (bottom right) for the sequence [azi] (thick: recovered; very thick: min. and max. target values; thin: forward modelling).](image)

![Fig. 2 - Comparison of VT geometry recovered for [z] (thick lines) and extracted from the X-rays database (dashed lines). From left to right, contexts [aza], [azi], [azu].](image)
and thus of H_0, was determined from PS, ΔP_c and U. Fig. 3 presents an example of resulting trajectories.

![Fig. 3 - Trajectories of laryngeal parameters for [pasi] (thick line) et [pazi] (thin line).](image)

As A_g is estimated in a very indirect way, its accuracy is not very high. This raises no problem for voiceless fricatives, where devoicing occurs as soon as A_g is higher than about 0.2 cm², at the same time as friction noise can be maintained through a high enough ΔP_c. For voiced fricatives, the situation is more critical, as the requirements for maintaining voicing at the glottis (high ΔP_g and low A_g) and noise at the constriction (high ΔP_c and low A_c) are contradictory. Therefore, in some cases, it has been needed to correct manually the automatic results, using a visual comparison between natural and synthetic sounds.

The first resulting sounds, that will be played at the seminar, are of high quality. Formal systematic tests will be performed in the future.

Conclusion and perspectives

The present work has demonstrated the feasibility of high quality articulatory synthesis for fricative consonants in vocalic context. Indeed, it has been possible to recover, from the speech signal (and from supplementary aerodynamic data) produced by a reference subject, the articulatory commands of a complete articulatory synthesiser based on this same subject.

The resulting set of synthesised VFV syllables constitutes the first step towards the establishment of the sensory-motor examplars needed for a robotic approach of speech synthesis (Bailly, 1996).

For technical reason, the present acoustic corpus has not been recorded with simultaneous lip images. It is however very likely that such extra constraints would be very helpful in the inversion procedure.

Moreover, as evoked by Lee & Beckman (1994), one should consider that articulatory strategies are guided not only by acoustic goals or by the exploitation of extra articulatory degrees of freedom to optimise gestures, but also by constraints related to aerodynamic requirements such as jaw raising and tongue shaping suitable to direct an air jet towards the incisors in order to increase the friction noise, as in the sibilants. However, this approach is still difficult, as good models of noise generation are practically not available yet.

Acknowledgements

This work has been partially funded by the European ESPRIT/BR project Speech Maps. Eric Castelli’s participation to an early version of the acoustic synthesiser is acknowledged.

References

