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ABSTRACT

We present a risk-based decoding strategy for the task
of Named Entity identification from speech. This ap-
proach does not select the most likely utterance pro-
duced by an ASR system, which would be the maxi-
mum a-posteriori (MAP) strategy, but instead chooses
an utterance from an N-best list in an attempt to mini-
mize the Bayes Risk under loss functions derived specif-
ically for the Named Entity task. We describe our
experimentation with three risk-based decoders corre-
sponding to the following three performance evalua-
tion criteria: the F-measure, the slot error rate, and
the fraction of correctly identified reference slots. An
unsupervised optimization is also applied to these de-
coders. The MAP decoder is used as the baseline for
comparison. Our preliminary experiments with these
task dependent decoders, using N-best lists of depth
200, show small but encouraging improvements in per-
formance with respect to both manually tagged and
machine tagged reference.

1. INTRODUCTION

Identification of Named Entities (NE) in written text or
from speech is an important step towards the goals of
extracting information, identifying concepts, and ig-
noring non-information bearing words. NE identifi-
cation was introduced in the �th Message Understand-
ing Conference as a component information extraction
task, and is referred to as the IE-NE task.

The IE-NE task requires identifying three types of
entities: names, temporal expressions, and numeral
expressions. The overall task is to identify all instances
of these expressions in an input stream of text or speech
and assign their constituents to sub-categories. Each
entity can be thought of as an object with a fixed num-
ber of slots filled by the constituents. An example of a
general named entity and its constituent slots is shown
in Figure 1. This figure is taken from the user’s man-
ual for the message understanding conference scoring
software [1].

The identification of Named Entities from speech
has recently received much attention. The majority of
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Figure 1: Example of a Named Entity (after [1])

current approaches apply an ASR system to the input
speech and then identify the entities in the recognizer
output. The performance of IE-NE systems is eval-
uated at the slot level after aligning the NE tagged
recognizer output with manually tagged or machine
tagged reference. Various performance evaluation cri-
teria have been used. Some are similar to those used
for information retrieval systems, namely precision,
recall, and the F-measure, while some others are spe-
cific to the IE-NE task, such as the slot error rate (SER)
and the fraction of correctly recognized reference slots
(FC). For reader’s convenience we list the following
two criteria [2] [3]

F-measure:

F �E�� E� �
� C�E�� E�

T �E�� � T �E�
(1)

Slot Error Rate (SER):

S�E�� E� �
M�E�� E� � Sp�E

�� E� � I�E�� E�

T �E�� (2)

where E is the NE tagged recognizer output which
is to be compared with the NE tagged reference tran-
scription E�. In the alignment of E with E �, C�E�� E�
is the number of correct slots; T �E� and T �E �� are
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Figure 2: Performance comparison for the thirteen
systems submitted for 1998 Hub-5E evaluations (af-
ter [7]).

the total number of slots in E and E �, respectively;
M�E�� E� is the number of missing slots from the ref-
erence; Sp�E�� E� is the number of spurious slots in
the recognizer output; and I�E �� E� is the number of
incorrect or substituted slots.

In recently held LVCSR evaluations [4] thirteen
state-of-the-art ASR systems were evaluated as to their
suitability for Named Entity identification from speech.
The specific NE annotation guidelines used for these
evaluations are available by ftp from NIST [5]. The
Identifinder(tm) system (described in [6]) developed
by BBN was used to identify entities in the output of
each system. The IE-NE performance of these systems
was summarized by Martin et.al. [7]; we reproduce
their analysis here in Figure 2. The top plot in Figure 2
shows the F-measure performance of these systems
as a function of their word error rate (WER). Note
that the best two systems in F-measure had identical

F-measure but were more than 1.5% apart in WER.
On the other hand, the two best WER systems had al-
most identical WER but their F-measures differed by
2%. The WER for systems with similar F-measure
varies by as much as 5%. All plots in Figure 2 indicate
that, as intuition would suggest, overall performance
does follow WER. However, it also appears that per-
formance on different measures is not completely de-
termined by WER.

In this paper we describe a recognition strategy
that is matched to the task of IE-NE from speech. It
does not select the most likely utterance produced by
an ASR system, as is done in the experiments reported
above, but instead chooses an utterance from an N-
best list in an attempt to minimize the Bayes Risk un-
der loss functions derived specifically for the NE task.
Such an approach was first applied to word error rate
minimization by Stolcke et.al. [8], and has since been
extended to a class of tasks with different task depen-
dent loss functions [9]. It should be noted that in what
is presented here we do not vary any of the system pa-
rameters such as the acoustic models or the language
models; the variation is only in the decoding strategy
that selects one of the N-best candidates as the rec-
ognizer output. Our goal is to develop a recognition
strategy based on task dependent loss functions to bet-
ter integrate ASR systems into larger language pro-
cessing and understanding applications. If the ASR
systems did work perfectly, this would not be needed.
However, we are interested in getting the best IE-NE
performance possible from a flawed system; it may be
that a perfect system is not necessary.

The next section describes the formulation of our
approach and how it is applied to the task of IE-NE
from speech. We then present our experiments and
preliminary results on 1998 Hub-5E evaluation data.
A brief discussion of the results and some speculations
are presented at the end.

2. RISK BASED DECODERS FOR IE-NE

We wish to formulate Named Entity identification in
speech as a classification task. For this we specify a
task dependent, bounded, and real-valued loss func-
tion l�E�� E� that describes the loss incurred when an
acoustic observationA with true Named Entity tagged
word sequence E � is classified instead as belonging to
the tagged word sequence E. Both E � and E belong
to E , the set of all tagged word sequences.

The loss function for a task is closely related to the
performance evaluation metric of that task. For our
task we chose three evaluation metrics: the F-measure
(Equation 1), the slot error rate (Equation 2), and the
fraction of correctly identified reference slots. These
three have the intuitively obvious loss functions: ���
F �E�� E��, S�E�� E�, and ���Q�E �� E��, where

Q�E�� E� �
C�E�� E�

T �E��
(3)



It is desirable to have a classification rule ��A�

��A� � A � E � (4)

that has the smallest Bayes Risk

B���A�� � EP �E�A�	l�E� ��A��
� (5)

The Bayes Risk of ��A� is the expected loss when
��A� is used as the decision rule for data generated un-
der P �E�A�; this distribution describes the data that
will be encountered in practice. l�E� ��A�� is a gen-
eral loss function; in our work here it will be one of
the three mentioned above. It is well known that the
decision rule that minimizes the Bayes Risk is given
by [10]

��A� � argmin
E�E

X

E��E

l�E�� E�P �E�jA�� (6)

We call this Bayes optimal decoding rule the risk-based
decoder. Note that for a binary valued loss function,
i.e. l��� �� � � or �, the risk-based decoder is the well
known maximum a-posteriori probability (MAP) de-
coder [11] 1

��A� � argmax
E�E

P �EjA�� (7)

In most applications the test set consists of many
utterances andA in Equation 6 is the acoustic evidence
for the whole test set (i.e. all the test set utterances put
together). Similarly, E and E � are word hypotheses
tagged with the Named Entities for the entire test set.

Suppose the loss function can be broken down as

l�E�� E� �

TX

i��

l�E�
i� Ei�� (8)

where T is the number of test set tokens. Assume also
that

P �E�
ijA� � P �E�

ijAi� (9)

then Equation 6 can be simplified to a decoder for each
test set utterance in the following manner

��Ai� � argmin
Ei�E

X

E�

i
�E

l�E�
i� Ei�P �E�

ijAi��
(10)

Implementing Equation 10 may be infeasible due
to large size of set E . The following N-best list rescor-
ing approximation has been proposed earlier [8] [9]

��Ai� � argmin
Ei�Ei

X

E�

i
�E

�

i

l�E�
i� Ei�P �E�

ijAi��
(11)

where Ei and E
�

i are small, possibly different, subsets
of E containing word sequences with high posterior
probabilities given the ith utterance. Equation 11 can

1This is assuming l�E�� E�� � �, and l�E�� E� � � �E� �� E.

be implemented efficiently for a specified loss function
if an estimate of the class posterior probabilities can be
obtained.

While the loss functions S�E�� E� and Q�E�� E�
are well approximated by Equation 8, F �E �� E� can
not be explicitly computed as a sum over test set to-
kens. We propose the following approximation

F �E�� E� �
� C�E�� E�

T �E�� � T �E�

�

PT
i�� � C�E�

i� Ei�PT
i�� T �E

�
i� �
PT

i�� T �Ei�

�

TX

i��

� C�E�
i� Ei�

T �E�
i� � T �Ei�

(12)

This is a per-utterance approximation to the F-measure.
Like most other systems for IE-NE from speech,

we have a two step strategy: first classify Ai into a
word sequencesWi and then use a mappingG to iden-
tify Named Entities Ei in Wi. It could be Gmanual

in case of manually tagged sentences or Gtagger in
case of machine tagging, for example the BBN Identi-
finder(tm). To obtain the class posterior probabilities
we used the following approximation:

P �E�
ijAi� � P �W �

i jAi�� (13)

where W �
i is the word sequence corresponding to

E�
i. The quantity P �W �

i jAi� is estimated from the N-
best lists as shown in our earlier work [9]. Note that in
the approximation above, there is no P �E �

ijW
�
i � term

since we are assuming a deterministic relation G be-
tween W �

i and E�
i. However our formulation does sup-

port probabilistic relation. A probabilistic mapping
would be more suitable if sentences were to be clas-
sified into more abstract entities, such as concepts, in
which case the syntactic and semantic ambiguity would
provide the probabilistic component to the assignment.

As presented in one of our earlier papers [9], we in-
troduce a single tuning parameter in the computation
of P �W �

i jAi�. This parameter is then optimized in an
unsupervised manner under a given loss function. Our
implementation of risk-based decoder for IE-NE from
speech is summarized by the pseudo-algorithm of Fig-
ure 3.

3. EXPERIMENTS AND RESULTS

Our preliminary experiments were performed on con-
versational speech over telephone. Two corpora - Call-
home and Switchboard were used; the test set was the
evaluation set for the 1998 Hub-5E fall evaluations. A
200 entry N-best list of hypotheses for each test set
utterance was provided to us by BBN. All the exper-
iments reported below were performed on this data.
The BBN Identifinder(tm) system [6] was used to tag
the N-best lists with Named Entities. The alignment
and scoring was performed using the MUC scoring



for i = 1 to T (indices of training set tokens)
1. For Ai, get N-best list of sentences Wn

i

and P �W n
i � Ai�.

2. Tag each sentence in the N-best list with
the NE-tagger. All N tagged sentences
form the set E

�

i .
3. Find optimal likelihood tuning parameter

by unsupervised optimization.
4. Compute P �E �

ijAi� for each E �
i in E

�

i

incorporating the parameter obtained above.
5. Use Equation 11 to get the desired NE

hypothesis.

Figure 3: Pseudo-algorithm for IE-NE in speech

tools developed by MITRE and SAIC, and distributed
by NIST. We used the tools included in the IEEVAL0.3
distribution by NIST.

We evaluated our system with respect to two ref-
erences: manually tagged reference transcriptions and
Identifinder(tm) tagged reference. As described above,
we investigated three loss functions and their corre-
sponding risk-based decoders: a F-m decoder that op-
timizes the F-measure (F ); a SE decoder that mini-
mizes the slot error rate (S); and a FC decoder that
maximizes the fraction of correctly identified refer-
ence slots (Q). For F-measure we used the approxi-
mation of Equation 12.

Table 1 shows the upper and lower bounds on the
performance obtainable from the 200-best lists with
respect to the manually tagged reference. The bound
on the F-measure performance was obtained by first
selecting the sentences corresponding to per-utterance
F-measure bounds and then evaluating the resulting set
of sentences against the reference under the actual F-
measure.

F (%) S (%) Q (%)
Oracle best 63 50 53.1
Oracle worst 12 265 14.4

Table 1: Bounds on the performance from 200-best
lists. F is the F-measure, S is the SER, and Q is the
fraction of correct reference slots.

The performance of three risk-based decoders with
respect to manually tagged and Identifinder(tm) tagged
reference is given in Tables 2 and 3, respectively. The
baseline performance was obtained using the top, most
likely, candidate in each 200-best list.

Although all three decoders can be optimized in
an unsupervised manner, we present only optimiza-
tion results for the slot error rate decoder. Tables 4
and 5 show that this optimization yields a slight per-
formance improvement measures against both manu-
ally and Identifinder(tm) tagged reference.

F (%) S (%) Q (%)
Baseline 43 90.5 34.4
F-m decoder 44 86.5 34.4
SE decoder 44 85.9 34.2
FC decoder 28 235.6 46.7

Table 2: Performance of three risk-based decoders
on three evaluation metrics with respect to manually
tagged reference.

F (%) S (%) Q (%)
Baseline 48 81.8 37.7
F-m decoder 50 77.0 37.8
SE decoder 50 76.7 37.6
FC decoder 30 228.8 49.2

Table 3: Performance of three risk-based decoders
on three evaluation metrics with respect to Identi-
finder(tm) tagged reference.

F (%) S (%) Q (%)
Un-optimized SE decoder 44 85.9 34.2
Optimized SE decoder 44 85.4 33.9

Table 4: Effect of unsupervised optimization on SE de-
coder. Performance evaluated against manually tagged
reference.

F (%) S (%) Q (%)
Un-optimized SE decoder 50 76.7 37.6
Optimized SE decoder 50 76.2 37.4

Table 5: Effect of unsupervised optimization on SE de-
coder. Performance evaluated against Identifinder(tm)
tagged reference.

4. DISCUSSION AND CONCLUSIONS

We have presented a risk-based decoding strategy for
identification of Named Entities from speech. This
strategy aims at directly optimizing the expected per-
formance of the system under the criterion of interest.
We show why the implementation of an exact risk-
based strategy may be infeasible and show approxi-
mations that implement a per-utterance decoder based
on an N-best list rescoring procedure.

Upon comparing the baseline with the oracle num-
bers it is evident that even in these relatively small N-
best lists there is room for substantial increase or de-
crease in performance. We note also that the overall
performance is better when the reference is tagged by
the Identifinder(tm) as opposed to when it is tagged
manually. This points out a limitation of our system:
we use the Identifinder(tm) to tag the recognizer N-
best lists (step 2 in the pseudo-algorithm of Figure 3)
and hence optimize only for Identifinder(tm). There-



fore, when evaluating the system performance against
manually tagged reference, there is a mismatch in op-
timization and testing criteria.

Looking at the performance of the three decoders
we note that even though a rough approximation was
used in the F-measure decoder, performance improves
by 1 to 2% under the actual F-measure. The SER de-
coder reduces the slot error rate by about 5%. The FC
decoder performs quite well on the evaluation crite-
rion of its interest. However, it produces many spu-
rious slots in an attempt to find as many correct slots
as possible, and hence results in a poor SER and F-
measure performance. When evaluated with respect to
the Identifinder(tm) tagged reference, the F-m and the
SE decoders yield a greater increase in performance
over the baseline possibly owing to the matched con-
ditions of reference and hypothesis tagging.

We note that our baseline results are not as good
as those reported by NIST. This may be due to sev-
eral factors. The N-Best lists provided to us by BBN
were intermediate results and thus did not benefit from
all post-processing steps performed to extract the hy-
potheses submitted to NIST. We note also that the Iden-
tifinder(tm) and scoring setup used here may not be
identical to those used by NIST.

The techniques presented herein are quite general
and apply to a large set of classification problems. As
pointed out earlier, it is conceivable to use these ideas
to the larger problems of identifying concepts, topics,
and stories in speech and text.
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