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Abstract
In this paper we describe how 2D appearance models can

be applied to the problem of creating a near-videorealistic talk-
ing head. A speech corpus of a talker uttering a set of phoneti-
cally balanced training sentences is analysed using a generative
model of the human face. Segments of original parameter tra-
jectories corresponding to the synthesis unit are extracted from
a codebook, normalised, blended, concatenated and smoothed
before being applied to the model to give natural, realistic ani-
mations of novel utterances. We also present some early results
of subjective tests conducted to determine the realism of the
synthesiser.

1. Background
It is well known that speech is a multi-modal form of commu-
nication; seeing the face of the talker provides additional in-
formation over and above the auditory signal that significantly
influences the perception and understanding of speech [1, 2].
The face is a complex communication device that provides both
linguistic and non-linguist cues and we quickly become expert
at detecting and recognising subtle changes in the features of
the face, making realistic animation of the human face a very
difficult problem. Potential applications for a suitably realis-
tic facial animation system include desktop agents, character
animation in films or computer games, translation agents, low
bandwidth video conferencing and the personalisation of web-
based instant messenger clients to name but a few.

Facial animation systems can be broadly classified as ei-
ther graphics-based or image-based. Graphics-based systems
represent points on the face as vertices in three dimensions
and approximate the surface of the face by connecting the ver-
tices. A set of parameters deform the mesh in some controlled
manner, where the parameterisation is either direct, as in ter-
minal analog synthesis [3, 4, 1], or indirect, as in physically-
based synthesis [5, 6, 7]. Graphics-based systems can be ef-
ficiently rendered, especially on modern graphics processors,
however they tend to lack videorealism. Texture mapping an
image of a real face onto the mesh generally is still not enough
to convince a viewer that the animated sequence is a real face.

Image-based systems use computer vision or image pro-
cessing algorithms to build facial models and drive animations
from images of real faces, for example [8, 9, 10, 11, 12, 13].
Providing the correct lip shape is presented for a given sound
and the synthesised movements of the face look natural, image-
based synthesis is able to achieve a high degree of videore-
alism. Bregler and co-workers [8] automatically segment ex-
isting footage of a talker into short sequences corresponding
to triphones and replay these segments in a new order to cre-
ate novel sequences. The quality of the resultant animations
is generally determined by the size of the training corpus. A

very large database is required for a reasonable coverage of all
possible triphones, and where a triphone is not contained in the
database the closest example is used. Brand [9] and Brooke
and Scott [10] use hidden Markov models (HMMs) to learn
the characteristics of facial deformations associated with speech
production. The trained HMMs are used to generate new se-
quences, where Brand animates both the speech and expression
of a (possibly) novel person, while Brooke and Scott generate
image sequences of the mouth region of a single talker. Cosatto
and Graf [11] populate a hyper-space of facial examples, where
the dimensions of the hyper-space correspond to measurements
on a talker’s face. Example images are extracted from this com-
pact hyper-space based on the phonetic string to be synthesised
and these mouth shape images stitched together with images of
other facial regions (eyes, cheeks etc.) to create novel sequences
of expressive speech. Ezzat and Poggio report a model-based
synthesis technique that creates very realistic speech animation
of the mouth region of a talker [13]. Here, we describe our alter-
native technique for achieving very realistic speech animation
of the whole face [14, 15], and describe some early subjective
tests used to evaluate the naturalness of the synthesiser.

2. Data Capture
To ensure the pose of the head remained constant, the training
data was collected using a head mounted camera and transferred
from DV tape to computer using an IEEE 1394 compliant cap-
ture card with a frame size of 360x288 pixels (one quarter DV-
PAL). The audio was captured using the on-camera microphone
and digitised at 11025 Hz, 16 bits/sample stereo and was later
used to phonetically segment the video using a HMM-based
speech recogniser run in forced-alignment mode. Only a single
talker was recorded in a single sitting to remove identity varia-
tion and to ensure the lighting was even and constant throughout
the entire training video. The speaker held the facial expression
as neutral as possible (no emotion) to confine the variation of the
facial features to that due to speech. The training data consisted
of 279 sentences, comprising approximately twelve minutes of
speech data.

3. Modelling the Face
Following the notation of Cootes and co-workers [16], a statis-
tical model of the shape of an object, termed the point distribu-
tion model (PDM), is trained by manually placing landmarks on
a set of images and performing a principal component analysis
(PCA) on the coordinates of these landmarks. Typically about
100 points are used for the whole face and 30 images are se-
lected for hand labelling covering a broad range of the mouth
shapes associated with speech production.

Any training shape can then be approximated using ���
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����������� , where � is the mean shape, �	� is the matrix of
the eigenvectors of the covariance matrix associated with the 
��
eigenvalues of the greatest magnitude, chosen to describe some
preset percentage of the total variation (typically 95%), and ���
is a vector of 

� shape parameters.

A statistical model of the appearance of the face is com-
puted by warping the labelled images from the landmarks to the
mean shape. This normalises the shape of the face in each im-
age, ensures each example has the same number of pixels and
ensures a pixel in one example corresponds to the same feature
of the face in all other examples, where typically about 40,000
(RGB) pixels are used. A further PCA is performed on the pixel
values within the shape-normalised faces, such that any RGB
appearance can be approximated using � � ����������� , where� is the mean shape-normalised image, � � is the matrix of the
first 
�� eigenvectors of the covariance matrix and ��� a vector of
appearance parameters.

Each image is, therefore, described by a set of shape pa-
rameters and a set of appearance parameters, � � and � � respec-
tively. The shape and appearance spaces are concatenated such
that the face in an image maps to a single point in a face-space,
where some of the dimensions of this face-space correspond to
shape variation and some to appearance variation. We do not
project the shape and appearance parameters into a combined
model space for synthesis as subjective testing of various forms
of appearance models have shown that the most dynamically re-
alistic models are comprised of independent shape and appear-
ance models [15].

4. Data Preparation

Given the shape and appearance models, the face in all 34000
video frames must be encoded in terms of the parameters ���
and � � . To project the face onto the principal components re-
quires the landmark positions for each image, which are ob-
tained using the gradient descent active appearance search al-
gorithm [17]. This takes as input an image, the shape model
and the appearance model, and outputs the corresponding land-
marks for each frame. This labelling can be done using any
face tracker, however active appearance models and their de-
scendent’s have the advantage that they use the same models as
used by the synthesiser. Hence the points on the face located by
the tracker are exactly the points required by the synthesiser.

Given the landmarks, each image is projected into face-
space by computing the shape parameters, warping the image
from the landmarks to the mean shape and computing the ap-
pearance parameters. Each example image corresponds to a
point in face-space and over the course of a sentence the pa-
rameters approximate a trajectory through face-space. A con-
tinuous parametric representation of this trajectory is obtained
using Hermite interpolation [18], and the 279 continuous trajec-
tories, one for each training sentence, are stored in the synthesis
codebook. Hermite interpolation is used to fit the data rather
than natural cubic splines as the smoothness constraints in the
calculation of the natural cubic spline often results in an over-
shoot of the data points. If, say, a point of curvature along the
parameter trajectory corresponds to mouth opening, the over-
shoot could result in the mouth opening further than actually
occurred in the original data and the auditory and visual infor-
mation could become misaligned.

4.1. Segmenting the Trajectories

The audio component of the training video is passed through the
HTK speech recogniser [19], the output of which is a list of the
constituent phoneme symbols that form each sentence and their
corresponding start and end times. This phonetic information is
also stored in the synthesis codebook and is later used to index
the parameter trajectories such that segments can be extracted
corresponding to individual phonemes.

4.2. Measuring Phoneme Similarity

It is well known that during speech lip shapes depend not only
the sound being produced, but also the surrounding sounds —
known as phonetic context. The shape and appearance models
are used in a sample-based synthesis scheme, so the synthe-
siser must be able to account for phonemes appearing in unseen
contexts. To allow for this a similarity matrix is used to find
contexts in the training data that are ‘closest’ to an unseen con-
text. This similarity matrix is automatically derived from the
training data and each element contains an objective measure of
similarity, in terms of the model parameters, between two given
phonemes. This idea is similar to that in [20], except we ex-
tend their idea to consider the time variation of the parameters,
the degree to which phonemes are modified by context and the
relative significance of each model parameter.

To build the matrix, first all observations of each phoneme
are gathered and the relevant portions of the original trajecto-
ries sampled at five equi-distant points over the duration of the
phoneme1 Next, the mean representation of each phoneme is
computed and the distances found on a pair-wise basis using,

��� ������� �"!$#�%'&��)( ���!+* &'�,( ���!.-0/ ��1�2�3
(1)

where
��� �

is the distance between phonemes 4 and 5 . ( � is
the mean matrix representing the 47698 phoneme and

( �
the 5�698

phoneme. The weights
&

take into account the degree to which
the context modifies the lip shape for a phoneme, i.e. how re-
liable the mean representation is for a phoneme. For each
phoneme, its weight is proportional to the total area between
the mean trajectory and all of the observed trajectories. The
value

/ �
is the significance of the :;6<8 parameter in the model

and is proportional to the variance captured by the correspond-
ing principal component.

Given the matrix of distance values, the similarities are
computed using = � � �?>�@"A,B�CED�F

(2)

The range of similarity is 0 (maximally dissimilar), to 1 (iden-
tical) and the variable G controls the spread of similarity values
over the range (0,1). This similarity matrix is stored with the
parameter trajectories and phoneme timing information in the
synthesis codebook. Some typical similarity values are shown
in Table 4.2.

5. Synthesis
A visual sequence corresponding to a new utterance is synthe-
sised by first converting a text stream to a list of phonemes and
durations. This can either be from analysis of a real (unseen)
utterance, or derived from a text-to-speech (TTS) synthesiser.

1The choice of sampling at five equi-distant points follows [20], we
have also used the continuous trajectory representations and calculated
the distances analytically, which gives similar results.



Phoneme Rank 1 Rank 2 Rank 3

m p 0.869 b 0.850 w 0.830
f v 0.808 s 0.621 d � 0.619
t d 0.967 � 0.900 z 0.894
t� d � 0.898 � 0.852 s 0.767

Table 1: Some typical phoneme similarity scores. The column
Rank 1 is the most similar phoneme with its similarity score,
Rank 2 the second most similar and so on. Generally the most
similar phonemes belong to the same class of sound, for exam-
ple the bilabials /b/, /m/ and /p/ are all considered similar, as
with the labio-dental fricatives, /f/ and /v/.

For each phoneme to be synthesised, the original training data
is searched for the � examples of that phoneme in the most sim-
ilar contexts found in the codebook using

� ������ ���
	 �
! C �4"�
� � �� ���
	 ��� C �4+���

3
(3)

where � � is the similarity between the desired context and the5 698 context in the codebook, � is the context width,
� ! C � is the

similarity between the 4 698 left phoneme in the 5 698 codebook
context and the corresponding phoneme in the desired context,� � C � is the similarity between the 4 698 right phoneme of the 5 698
codebook context and the corresponding phoneme in the desired
context. This similarity score is attractive since it allows the
context width to be easily varied by simply changing an input
parameter to the synthesiser ( � ), the structure of the synthesiser
itself requires no modification. In the results presented here a
context width of � � � is used, hence, the synthesis unit is the
triphone. Given the � closest matches in the codebook for each
synthesis phoneme, the corresponding portions of the original
parameter trajectories are extracted and temporally warped to
the desired duration. A weighted average of these normalised
trajectories is computed to give a new trajectory in face-space,
where the weights are proportional to the similarity of the code-
book context to the synthesis context, ensuring the most similar
contexts receive more weight and that the sum of the weights is
unity.

The new phoneme trajectories in face-space are concate-
nated to form a trajectory for the entire sentence, which is
sampled at the original frame rate. Since no smoothness con-
straints were placed on the examples selected from the code-
book, smoothing splines [21] are fitted through the model pa-
rameters to ensure a smooth transition between synthesis units
and the smoothed parameters are applied to the model to pro-
duce the synthetic image sequence of the talking face. The syn-
thesiser itself outputs a sequence of 2D landmarks and a se-
quence of shape-normalised images. The final synthesised im-
age frames are created by warping the shape-normalised images
to the corresponding landmarks.

Example parameter trajectories are shown in Figure 1,
where the trajectory for the first parameter for the shape and
appearance models are shown for an original (novel) sequence
and the synthesised equivalent. While there are systematic dif-
ferences between the trajectories, the overall shape is generally
correct. Formal subjective testing is required in order to deter-
mine the significance of the differences between these trajec-
tories. Results of early subjective tests are given in Section 6.
A comparison of original and synthesised faces from a real se-
quence and the corresponding synthesiser output are shown in

Figure 2. The data for the original sequence was not included
in the synthesis codebook.
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Figure 1: Upper plot shows the first shape model parameter tra-
jectory from an original sequence (solid curve) and a synthetic
sequence (dashed curve). The lower plot shows the same infor-
mation, but for the first appearance parameter. The trajectories
correspond to the phrase “Charlie brought his dog out but their
only pure intent was to catch churchgoers wearing turquoise.”

m255_059 m255_086 m255_108

Figure 2: The top rows shows pixel values extracted from se-
lected video frames from a real video sequence not used in train-
ing, while the bottom row shows the corresponding face output
by the synthesiser.

The synthesis method described here for creating near-
videorealistic synthetic visual speech sequences has the advan-
tage over traditional image-based systems in that the manipu-
lation of the original data is much easier in terms of the model
parameters than the original images. The resultant sequences
are still only 2D image sequences of a talking face however.
It just happens that the images are created by the generative
model, rather than obtained directly from a camera. The next
section describes how the synthesiser can be easily extended to
animate a 3D mesh model, providing near-videorealistic 2.5D
animations.

6. Evaluation of Talking Faces
The quality of the output of a synthesiser can be measured us-
ing both subjective and objective tests. Objective measures of
performance are attractive because they are automatic and re-
peatable. Numerical comparisons are made between some pa-
rameterisation of an original utterance and its synthetic equiv-
alent, with the difference giving a measure of the distortion in



the synthesised output. Objective measures can only be used
as a guide however, since it remains difficult to determine the
overall naturalness of the synthesiser output using only objec-
tive methods. Subjective measures may seem less attractive as
they require a panel of users to make judgements regarding the
performance of the system, however it should be remembered
that it is the human perception of the performance that is the
ultimate benchmark.

Subjective measures of quality include the naturalness, ac-
ceptability and intelligibility [22]. Intelligibility is a measure
of the information provided the synthesiser, which for visual
speech usually requires lipreading tests. Acceptability measures
how suitable a system is for a given application. For example,
for a particular application the user interface need not be video-
realistic and a graphics model may suffice [23]. Naturalness is a
general measure of performance that indicates the smoothness
and realism of the dynamics of the features of the face. The
following sections outline subjective experiments conducted to
determine the naturalness of the synthetic visual speech output
by the synthesiser.

6.1. Testing the Effect of Parameter Smoothing

The synthesiser described above imposes no smoothness con-
straints on the units selected from the training corpus. The as-
sumption was made that any discontinuities at the concatena-
tion boundaries will effectively be removed using the smooth-
ing spline [21]. The aim of this test was to determine whether
the smoothing spline significantly affects the naturalness of syn-
thesiser output. The test used here follows the double stimu-
lus continuous quality scale (DSCQS) method outlined in ITU
BT.rec 500 [24]. This is a set of tests designed to evaluate the
performance of new video coding techniques against a refer-
ence system. In the DSCQS method, sequences are presented
in pairs to a viewer who is asked to judge the quality of each.
The sequences are rated on a continuous scale from 1 to 5, cor-
responding to the levels “bad”, “poor”, “fair”, “good” and “ex-
cellent”. The scores are usually collected on paper, where users
are asked to strike through the scale at the point corresponding
to the quality. Here a graphical user interface (GUI) presents
the movies and a slider collects the score from the user. The
GUI approximates a continuous scale by collecting scores in
the range 1 to 50, which are then divided by 10 to give the ITU
scale.

The sequences presented in this test were the original video
projected into face-space and the same sequence with the pa-
rameters smoothed using the smoothing spline. This is essen-
tially a video coding problem, where the unsmoothed sequences
represent the reference system and the smoothed sequences the
system under test.

Eight subjects took part in this test and all were asked to
watch the sequences and rate the naturalness of the dynamics of
the face. The original acoustic signal was played with the visual
sequences in order to provide a reference for the presented ma-
terial. In all twenty sentences were presented in pairs (smoothed
and unsmoothed), where the order of the pair is randomised.

6.1.1. Results

The result of a two-sample Wilcoxon’s signed rank test [25] on
individual viewer responses is shown in Table 2, where � is
the total number of observations, � is the number of observa-
tions used (sequence pairs with a difference in naturalness rat-
ing not equal to zero), � is the Wilcoxon test statistic and � the
probability value. Viewers 1–3 detected a significant reduction

� � � � Median

20 20 0.0 0.000 -20.50
20 20 0.0 0.000 -16.50
20 20 0.0 0.000 -13.50
20 20 38.0 0.013 -15.00
20 16 23.5 0.023 -6.500
20 18 122.0 0.117 3.750
20 20 67.5 0.167 -3.500
20 20 92.5 0.654 -1.000

Table 2: Result of the per-viewer Wilcoxon signed rank test to
determine the effect of the smoothing spline on the synthesiser
output.

in the naturalness of the smoothed sequences, the unsmoothed
sequences were always rated more natural than the smoothed.
The remaining five of the eight viewers did not detect a sig-
nificant reduction in the naturalness of the smoothed sequences
(����� F � � ), indeed viewer 6 preferred the smoothed sequences
overall. Feedback from the subjects suggested that the smooth-
ing splines gives the effect of “lazy” speech, i.e. the articulation
strength is lower for the smoothed sequences and movements
appear slower.

6.2. Testing the Naturalness of Sentence Level Synthesis

The purpose of this experiment was to determine the effect of
the number of observations extracted and blended from the syn-
thesis corpus on the naturalness of the synthesised output. In
order to determine the how well the longer term effects of coar-
ticulation are modelled, sentences were synthesised and played
back to the viewer.

Five test conditions were used, random lip movements syn-
chronised to the original acoustic speech signal, a single ex-
ample ( � � � ) extracted from the corpus for each synthe-
sis phoneme, � ��� and � �
	 observations extracted and
blended, and the original (smoothed) parameters. In all cases
the original speech signal was played back with the synthetic
output. The random lip movements and original parameters
were included to provide a upper and lower bound on the per-
formance of the synthesiser.

The test data consisted of 20 sentences drawn at random
from the training corpus and held out from training the synthe-
siser; each sentence was presented five times and played back in
a randomised order. The viewers were again asked to watch the
sequences and rate the naturalness of the dynamics of the face.

6.2.1. Results

The responses were subjected to a Kruskal-Wallis test2[25] in
order to determine whether there were significant differences
between the various synthesis methods, the original sequences
and the random sequences. The result of the test for all sequence
types is shown in Table 3. It is clear that the distribution of at
least one of the sequence types differs (� � � ). The median nat-
uralness score for the random mouth movements (6) is consid-
erably less than for the other four sequence types ( � � � ). This
is promising in that the naturalness of the synthesiser output is
significantly better than random movements (worst case), and
is close to the original smoothed sequences (best case). A point
to note from this experiment, the smoothed sequences here are

2For the case of testing only two distributions, the Wilcoxon signed-
rank test and the Kruskal-Wallis test are equivalent.



judged more natural than the smoothed sequences in the test de-
scribed in Section 6.1, and as natural as the original unsmoothed
sequences. This is most likely because in the previous exper-
iment the smoothed sequences were compared directly to the
unsmoothed and the loss of subtle movements would be less
obvious if the sequences were compared indirectly.

Sequence Type � Median Ave Rank �
Random 160 6 90.5 -18.97
� � � 160 30 420.2 1.20
� � � 160 33 462.5 3.79
� � 	 160 32 444.7 2.70

Original 160 37 584.7 11.27

Overall 800 400.5� ��� ��� F � � � � � F � � �
Table 3: Result of the Kruskal-Wallis analysis for the synthe-
sis conditions; random lip movements, � � � � 3 � 3 	 � observa-
tions extracted and blended from the synthesis corpus and the
original (smoothed) parameter trajectories in the presentation of
sentences.

To test for a significant difference in the naturalness of orig-
inal and synthesised sequences, the Kruskal-Wallis test was re-
peated with the random lip movements removed, shown in Ta-
ble 4. To determine if there is any significance when varying
the top � examples extracted from the codebook on the nat-
uralness, the test was again repeated without the random lip
movements and the original sequences, shown in Table 5.

Sequence � Median Ave Rank �
� � � 160 30 263.7 -4.48
� � � 160 33 304.9 -1.23
� � 	 160 32 287.6 -2.60

Original 160 37 425.8 8.32

Overall 640 320.5� ��� � F ��� � � � F � � �
Table 4: Result of the Kruskal-Wallis analysis for the synthesis
conditions; � � � � 3 � 3 	 � observations extracted and blended
from the synthesis corpus and the original (smoothed) parame-
ter trajectories in the presentation of sentences.

Sequence � Median Ave Rank �
� � � 160 30 223.3 -1.92
� � � 160 33 256.4 1.78
� � 	 160 32 241.8 0.14

Overall 480 240.5�$��� F 	 � � � � F �
Table 5: Result of the Kruskal-Wallis analysis for the synthesis
conditions; � � � � 3 � 3 	 � observations extracted and blended
from the synthesis corpus in the presentation of sentences.

The result of these tests show that the naturalness scores for
the synthesiser output are significantly lower than the original
sequences, but there is no significant difference in selecting the
top � , for � � � � 3 � 3 	 � examples, from the codebook. The
difference between the synthesiser output and the original se-
quences could be attributed to the fact that the original audio
signal was played back to the viewer with the visual sequences.

In this case the original audio and visual information come from
the same video sequence. If an utterance is spoken more than
once and analysed in terms of the model parameters, there will
undoubtedly be differences between the parameters due to the
natural variability in the speech production process. It is there-
fore unfair to expect the synthesiser to exactly replicate the orig-
inal sequence, and it would be useful to repeat this experiment
using synthetic audio rather than the original.

Although the difference is not significant in a statistical
sense, selecting only one example from the codebook resulted
in less natural sequences than selecting five examples, which
in turn was less natural that selecting three examples. The rea-
son selecting a single observation performs worst is because the
particular example extracted could be an over (or under) articu-
lation of a particular mouth shape. Selecting more than one and
generating a new trajectory as a weighted average ensures that
over and under articulations are removed. The reason select-
ing more and more examples does not significantly affect the
naturalness is because the new trajectory is a weighted average
of the selected examples, hence as more and more are selected
their influence in the new trajectory becomes less and less. The
new trajectory is always formed from examples of the correct
phoneme, but as more examples are used the subtle differences
due to context are averaged out in the less similar examples.

Similar tests were conducted using mono-syllabic words
as stimulus rather than sentences, where mono-syllabic words
provide the smallest meaningful unit that can be tested. The
idea being to test the short term naturalness of the synthe-
siser. Removing over articulations makes longer sequences look
more natural overall, but may have more of a significant effect
on shorter sequences since these are usually articulated more
clearly. The results are not shown here due to a lack of space,
but were similar to those presented for sentences.

7. Conclusions
In this paper we have presented an alternative to existing tech-
niques for creating highly realistic synthetic visual speech. The
synthesiser generates a new trajectory in face-space correspond-
ing to a novel utterance from example parameter trajectories in
a corpus. The parameters are applied to the model to create
a 2D set of landmarks and a shape-normalised image. The fi-
nal synthetic video frame is generated by warping the shape-
normalised image to the 2D landmarks. The synthesis strat-
egy is very simple and creates highly realistic animations, see
http://bjtpc.sys.uea.ac.uk for demos.

Formal subjective testing of the synthesiser shows that the
naturalness is approaching that of original sequences coded
in terms of the model parameters. A Turing test reported
in [15] showed that by simply judging the dynamics of the sys-
tem, the synthetic sequences are indistinguishable from model
encoded sequences. The short-fall in the naturalness in the tests
reported here could be attributed to the fact the original audio
was used in the test rather than synthetic auditory speech. The
tests will be repeated with synthetic audio to see how using real
auditory speech influences the perceived naturalness. Also, the
original sequences could be captured twice, and one set of se-
quences used for synthesis and the other for testing. The audi-
tory component for the test sequences would come from the
training sequence, but re-synchronised to the test sequences.
Another factor that could possibly influence the naturalness is
the face in the test sequences is presented as a patch against
a black background, see Figure 2. Re-compositing the face
into an original video sequence may further improve the real-



ism [13]. The face is then seen in the correct context, i.e. part
of a complete body, and with hair etc.

The synthesiser described here has been extended to ani-
mate the face of a full-bodied 3D avatar, details will be pub-
lished in a separate paper.
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