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ABSTRACT

Audio-based speaker identi�cation degrades severely
when there is a mismatch between training and test
conditions either due to channel or noise. In this pa-
per, we explore various techniques to fuse video based
speaker identi�cation with audio-based speaker identi-
�cation to improve the performance under mismatch
conditions.

1. INTRODUCTION

Humans identify speakers based on a variety of at-
tributes of the person which include acoustic cues, vi-
sual appearance cues and behavioural characteristics
(such as characteristic gestures, lip movements). In
the past, machine implementations of person identi�-
cation have focussed on single techniques relating to au-
dio cues alone (speaker recognition), visual cues alone
(face identi�cation, iris identi�cation) or other biomet-
rics. More recently, researchers are attempting to com-
bine multiple modalities for person identi�cation [3].
Speaker identi�cation is an important technology for
a variety of applications including security, and more
recently as an index for search and retrieval of digi-
tized multimedia content (for instance in the MPEG7
standard). Audio-based speaker recognition accuracy
under acoustically degraded conditions (such as back-
ground noise) and channel mismatch (telephone) still
needs further improvements. To make improvements in
such degraded conditions is a hard problem. We have
begun [6] to investigate the combination of audio-based
processing with visual processing for speaker recogni-
tion to improve the accuracy in acoustically degraded
conditions in the broadcast news domain. The use
of two independent sources of information can bring
signi�cantly increased robustness to both speech and
speaker recognition since signal degradations in the two
channels are uncorrelated [2]. Furthermore, the use of
visual information allows a much faster speaker iden-
ti�cation than possible with acoustic information. In
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this paper, we present results of various methods to
fuse person identi�cation based on visual information
with identi�cation based on audio information for TV
broadcast news video data (CNN and CSPAN) pro-
vided by the linguistic data consortium (LDC).

2. METHOD

The system carries out speaker identi�cation indepen-
dently on the acoustic and visual signal. The results
for the two modes are then combined together to ar-
rive at a �nal speaker identity, and a list of scores for
all the registered speakers indicating their similarity to
the test speaker.

2.1. Visual speaker identi�cation

The visual mode of speaker identi�cation is imple-
mented as a face recognition system. Faces are found
and tracked in the video sequences, and recognized
by comparison with a database of candidate face tem-
plates. This section describes the detection, tracking
and recognition processes.

2.1.1. Face detection

Faces can occur at a variety of scales, locations and
orientations in the video frames. In this system, we
make the assumption that faces are close to the ver-
tical, and that there is no face smaller than 66 pixels
high. However to test for a face at all the remaining
locations and scales, the system searches for a �xed size
template in an image pyramid. The image pyramid is
constructed by repeatedly downsampling the original
image to give progressively lower resolution represen-
tations of the original frame. Within each of these sub
images, we consider all square regions of the same size
as our face template (typically 11x11 pixels) as candi-
date face locations. A sequence of tests is used to test
whether a region contains a face or not. These are sum-
marized below and described in more detail in another
paper [4].

First, the region must contain a high proportion
of skin-tone pixels, and then the intensities of the
candidate region are compared with a trained face
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model. Pixels falling into a pre-de�ned cuboid of hue{
chromaticity{intensity space are deemed to be skin
tone, and the proportion of skin tone pixels must exceed
a threshold for the candidate region to be considered
further.

The face model is based on a training set of cropped,
normalized, grey-scale face images. Statistics of these
faces are gathered and a variety of classi�ers are trained
based on these statistics. A Fisher linear discriminant
trained with a linear program is found to distinguish
between faces and background images, and `Distance
from face space' (DFFS) [7] is used to score the quality
of faces given high scores by the �rst method. A high
combined score from both these face detectors indicates
that the candidate region is indeed a face. Candidate
face regions with small perturbations of scale, location
and rotation relative to high-scoring face candidates are
also tested and the maximum scoring candidate among
the perturbations is chosen, giving re�ned estimates of
these three parameters.

In subsequent frames, the face is tracked by using a
velocity estimate to predict the new face location, and
face models are used to search for the face in candidate
regions near the predicted location and with similar
scales and rotations. A low score is interpreted as a
failure of tracking, and the algorithm begins again with
an exhaustive search.

2.1.2. Face recognition

Having found the face, K facial features are lo-
cated using the same techniques (linear discriminant
and DFFS) used for face detection. Features are found
using a hierarchical approach where large-scale fea-
tures, such as eyes, nose and mouth are �rst found,
then sub-features are found relative to these features.
As many as 29 sub-features are used, including the
hairline, chin, ears, and the corners of mouth, nose,
eyes and eyebrows. Prior statistics are used to restrict
the search area for each feature and sub-feature rela-
tive to the face and feature positions respectively. At
each of the estimated sub-feature locations, a Gabor
Jet representation [8] is generated. A Gabor jet is a
set of 2-dimensional Gabor �lters | each a sine wave
modulated by a Gaussian. Each �lter has scale (the
sine wavelength and Gaussian standard deviation with
�xed ratio) and orientation (of the sine wave). We use
�ve scales and eight orientations, giving 40 complex co-
e�cients (a(j); j = 1; : : : ; 40) at each feature location.

A simple distance metric is used to compute the
distance between the feature vectors for trained faces
and the test candidates. The distance between the ith

trained candidate and a test candidate for feature k is

de�ned as:

Sik =

P
j a(j)ai(j)qP

j a(j)
2
P

j ai(j)
2

(1)

A simple average of these similarities, Si =
1=K

PK

1 Sik, gives an overall measure for the similarity
of the test face to the face template in the database.

2.2. Audio-based speaker identi�cation

The IBM Speaker identi�cation system uses two tech-
niques: a model-based approach and a frame-based
approach [1]. In the experiments described here, we
use the frame-based approach for speaker identi�cation
based on audio. Briey, the frame-based approach can
be described as follows:

Let Mi be the model corresponding to the ith

enrolled speaker. Mi is represented by a mix-
ture Gaussian model de�ned by the parameter set
f�i;j;�i;j; pi;jgj=1;::ni, consisting of the mean vector,
covariance matrix and mixture weights for each of
the ni components of speaker i's model. These mod-
els are created using training data consisting of a se-
quence of K frames of speech with d-dimensional cep-
stral feature vectors, ffmgm=1;::;K. The goal of speaker
identi�cation is to �nd the model, Mi, that best ex-
plains the test data represented by a sequence of N
frames, ffngn=1;::;N . We use the following frame-based
weighted likelihood distance measure, di;n in making
the decision:

di;n = � log

2
4

niX
j=1

pi;jp(fnj�i;j;�i;j)

3
5 (2)

The total distance, Di of model Mi from the test data
is then taken to be the sum of the distances over all the
test frames.

Di =
NX
n=1

di;n (3)

2.3. Fusion

In general, mode-fusion or the integration of di�erent
modes of information can be achieved by any of the
following methods of data fusion [5].

� data fusion | this involves integration of di�er-
ent modalities in raw form e.g. video camera and
microphone outputs.

� feature fusion | features are extracted from the
raw data and subsequently combined, e.g. for
speaker recognition cepstral features and facial
Gabor jet features could be combined.



� decision fusion | this is the fusion at the most
advanced stage of processing and involves combin-
ing the decisions of two di�erent classi�ers mak-
ing independent decisions about the identity of the
speaker-based on audio and visual features

In general, decision fusion provides a higher degree
of robustness, but is accompanied by possible loss of
information. An optimal fusion policy of using one of
these fusion strategies or some combination of the three
strategies needs to be investigated. For this paper, we
have experimented with the technique of decision fusion
and combine the scores based on visual information
(face-identi�cation) and audio information (based on
audio speaker identi�cation).

Given the audio-based speaker recognition and face
recognition scores, audio-visual speaker identi�cation is
carried out as follows: the top N scores are generated-
based on both audio and video-based identi�cation
schemes. The two lists are combined by a weighted
sum and the best-scoring candidate is chosen. Since
the weights need only to be de�ned up to a scaling fac-
tor, we can de�ne the combined score Savi as a function
of the single parameter �:

Savi = cos� Di + sin� Si (4)

The mixture angle � has to be selected according to
the relative reliability of audio identi�cation and face
identi�cation. One way to achieve this is to optimize �
in order to maximize the audio-visual accuracy on some
training data. Let us denote by Di(n) and Si(n) the
audio ID and video ID score for the ith enrolled speaker
(i = 1 : : :P ) computed on the nth training clip. Let
us de�ne the variable Ti(n) as zero when the nth clip
belongs to the ith speaker and one otherwise. The cost
function C(�) to be minimized is the empirical error
rate [9], that can be written as

C(�) =
1

N

NX
n=1

T̂�(n) where �̂ = argmax
i

Savi (n);

(5)
and where

Savi (n) = cos� Di(n) + sin� Si(n): (6)

In order to prevent over-�tting, one can also resort to
the smoothed error rate [10] de�ned as

C0(�) =
1

N

NX
n=1

X
i

Ti(n)
exp�S

av
i (n)

PP

j=1 exp
�Sav

j
(n)

; (7)

When � is large, all the terms of the inner sum ap-
proach zero, except for i = î, and C0(�) approaches
the raw error count C(�). Otherwise, all the incorrect

hypotheses (those for which Ti(n) = 1) have a con-
tribution that is a decreasing function of the distance
between their score and the maximum score. If the
best hypothesis is incorrect, it has the largest contri-
bution. Hence, by minimizing the latter cost function,
one tends to maximize not only the recognition accu-
racy on the training data, but also the margin by which
the best score wins. This function also presents the ad-
vantage of being di�erentiable, which can facilitate the
optimization process when there is more than one pa-
rameter.

3. RESULTS

All the experiments were carried out on CNN and
CSPAN video data collected as part of the ARPA
HUB4 broadcast news transcription task by the linguis-
tic data consortium (LDC). We digitized 20-40 second
clips of anchors and reporters with frontal shots of their
faces from the video tapes into MPEG2 format. The
training data contained 76 clips of 76 speakers while
the test data consisted of 154 additional clips from the
same 76 speakers

As pointed out earlier, the key challenge for audio-
based speaker identi�cation is to improve performance
when there is a signi�cant mismatch between testing
and training conditions either due to background noise
or channel mismatch. To investigate the bene�t of
combining video information under these conditions we
arti�cially generated mismatch between training and
test conditions. Noise mismatch was created by adding
speech noise to the audio signal at a signal-to-noise ra-
tio of about 10 dB.

Table 1 shows the recognition accuracy for di�erent
testing conditions and fusion techniques. The �rst two
rows give the accuracy of audio-only ID and video-only
ID. The next four rows show the results of several linear
fusion experiments. Since training data is needed for
the optimization of the fusion weights, the 154 clips
have been split into two sets of 77, with occurrences of
the same speaker evenly divided. The fusion weights
have been trained on set 1, then tested on set 2, and
conversely. The total number of tests is 154, like in
the �rst two rows. Hard optimization refers to the raw
error count of Eq. (5), while soft optimization refers to
the smoothed cost function of Eq. (7). For noisy data,
rows 3 and 4 refer to fusion weights optimized on clean
data (of set 1, when testing on set 2, and conversely),
i.e. fusion mismatch conditions, while rows 5 and 6
refer to fusion weights optimized on noisy data.

Linear joint audio-visual identi�cation signi�cantly
improves the accuracy on noisy audio data, while it
does slightly worse on clean data. A detailed analysis



Acoustic Condition Clean Noise mismatch

1 Audio ID only 92.9% 77.9%
2 Video ID only 63.6% 63.6%

3
Linear fusion
Hard opt.

90.9% 81.2%

4
Linear fusion
Soft opt.

92.2% 82.5%

5
Matched fusion
Hard opt.

n.a. 83.8%

6
Matched fusion
Soft opt.

n.a. 84.4%

Table 1. Audio-visual speaker ID

of the results shows that the amount of training data is
insu�cient to properly train the fusion weights in the
latter case.

Detailed examination of the audio and visual scores
suggest that the simple fusion technique used based
on a linear combination of the audio and visual scores
is su�cient for the data set on which the experiments
were carried out. We are investigating other techniques
based on estimates of the con�dence of the classi�ers
to determine the weights of the linear combination.
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