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Abstract

As many acoustic signal processing methods, for example for
source separation or noise canceling, operate in the magnitude
spectrogram domain, the problem of reconstructing a percep-
tually good sounding signal from a modified magnitude spec-
trogram, and more generally to understand what makes a spec-
trogram consistent, is very important. In this article, we derive
the constraints which a set of complex numbers must verify to
be a consistent STFT spectrogram, i.e. to be the STFT spectro-
gram of a real signal, and describe how they lead to an objective
function measuring the consistency of a set of complex num-
bers as a spectrogram. We then present a flexible phase recon-
struction algorithm based on a local approximation of the con-
sistency constraints, explain its relation with phase-coherence
conditions devised as necessary for a good perceptual sound
quality, and derive a real-time time scale modification algorithm
based on sliding-block analysis. Finally, we show how incon-
sistency can be used to develop a spectrogram-based audio en-
cryption scheme.
Index Terms: Short-time Fourier transform, Phase reconstruc-
tion, Spectrogram modification, Phase coherence

1. Introduction
Many acoustical signal processing techniques, developed for a
wide range of applications such as source separation[1, 2, 3, 4],
noise canceling [5], time-scale and pitch-scale modifications or
more generally audio modification [6], involve a processing of
the magnitude spectrogram, whether it be a short-time Fourier
transform (STFT) spectrogram, or a spectrogram obtained us-
ing other transforms such as constant-Q transforms for example.
To be able to produce a perceptually satisfactory sounding sig-
nal, phase information is necessary but usually not available. In
many situations, such as frequency-domain-based methods for
time-scale modification or for reconstruction of missing parts
of an acoustic signal [6, 7], phase must be partially or totally
reconstructed. Sometimes, as in source separation, based on
a sparseness assumption on the repartition of acoustic energy
in the time-frequency space, the phase of a mixture can be
used as a rough estimation of the phase when reconstructing
each extracted component using the estimated magnitude spec-
trograms. However, in both cases, incoherences between the
phase and the magnitude spectrogram from which we want to
reconstruct a signal lead in general to perceptually disturbing
artifacts. Moreover, the magnitude spectrogram of the recon-
structed signal may actually be very different from the one we
intended to reconstruct a signal from. An effective method for
phase reconstruction would thus have many applications and
broaden the range of situations where magnitude spectrogram
based techniques can be applied.

In order to be able to reconstruct the phase of a spectrogram
such that it is as coherent as possible with a given magnitude,
one first needs to understand what “coherent” means in such a
context. It is thus important to have an explicit criterion judging
the coherence of the phase, i.e., to quantify the consistency of a
set of complex numbers. We will focus here on the STFT spec-
trogram. In the following, we will call consistent STFT spectro-
gram a set of complex numbers which has been obtained as the
STFT spectrogram of a real signal, and inconsistent STFT spec-
trogram a set of complex numbers which cannot be obtained as
such. In this paper, we derive explicit consistency constraints
for STFT spectrograms as a simple linear system with coeffi-
cients depending on the window length, the frame shift and the
analysis and synthesis windows used to build the spectrogram or
which the spectrogram is assumed to have been obtained from.

The iterative STFT algorithm [8] introduced by Griffin and
Lim is the reference for phase reconstruction based on a mod-
ified magnitude STFT spectrogram. Its principle is to find
the closest consistent STFT spectrogram to a given modified
magnitude spectrogram. Here, we propose a flexible phase re-
construction algorithm based on the derived consistency con-
straints. It is conceptually close to the iterative STFT algorithm,
but the computational cost is reduced by focusing on local phase
coherence conditions and by enabling at each iteration the up-
date of each time-frequency bin’s phase independently. This
freedom in the selection of which bin to update gives an extra
flexibility to our algorithm, and we believe that it could thus
be embedded easily in a wide range of other signal processing
techniques.

We will first review in Section 2 the perfect reconstruction
conditions on the analysis and synthesis windows, then derive
in Section 3 the consistency constraints for STFT spectrograms.
In Section 4, we will introduce the algorithm for phase recon-
struction, based on the optimization of an objective function de-
fined using the consistency constraints, and show how it can be
used to develop a real-time time-scale modification algorithm.
Finally, in Section 5, we will explain how inconsistent spectro-
grams can be used to perform audio encryption, the synthesis
window acting as a decoding key.

2. Necessary condition on the window
functions for perfect reconstruction

Let (X(t))t∈Z be a digital signal. We review here the condi-
tions for perfect reconstruction of the signal through STFT and
inverse STFT [8]. LetN be the window length,R the window
shift,W the analysis window function andS the synthesis win-
dow function. We suppose thatW andS are zero outside the
interval0 ≤ t ≤ N−1. We assume that the window lengthN is
an integer multiple of the shiftR, and we noteQ = N/R. The
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STFT at framem is defined as the discrete Fourier transform
(DFT) of the windowed short-time signalW (t − mR)X(t)
(with the phase origin at the start of the frame,t = mR).

The inverse STFT procedure consists in Fourier-inverting
each frame of the STFT spectrogram, multiplying each obtained
(periodic) short-time signal by a synthesis window and sum-
ming together all the windowed short-time signals. On a partic-
ular framemR ≤ t ≤ mR+N−1, this leads to a reconstructed
signalY (t) given by

Y (t) =S(t − mR)W (t − mR)X(t)

+

Q−1
X

q=1

S(t − (m − q)R)W (t − (m − q)R)X(t)

+

Q−1
X

q=1

S(t − (m + q)R)W (t − (m + q)R)X(t)

where the three terms on the right-hand side are respectively the
contribution of the inverse transforms of framem, the overlap-
ping frames on the left and the overlapping frames on the right.
As the contributions of frames with an index difference larger
thanQ do not overlap, by equatingY (t) = X(t) for all t, we
obtain as in [8] the following necessary condition for perfect
reconstruction

1 =

Q−1
X

q=0

W (t − qR)S(t − qR). (1)

3. Derivation of the consistency constraints
for STFT spectrograms

Let (H(m, n))0≤m≤M−1,0≤n≤N−1 be a set of complex num-
bers, wherem will correspond to the frame index andn to the
frequency band index, andW andS be analysis and synthesis
windows verifying the perfect reconstruction conditions (1) for
a frame shiftR. For the setH to be a consistent STFT spec-
trogram, it needs to be the STFT spectrogram of a signalX(t).
But by consistency, this signal can be none other than the re-
sult of the inverse STFT of the set(H(m, n)). A necessary
and sufficient condition forH to be a consistent spectrogram
is thus for it to be equal to the STFT of its inverse STFT. The
point here is that, for a given window lengthN and a given
frame shift, if we denote the inverse STFT by iSTFT, the opera-
tion iSTFT◦ STFT from the space of real signals to itself is the
identity, while STFT◦ iSTFT fromCM×N to itself is not.

Let us derive consistency constraints for STFT spectro-
grams based on this consideration, by explicitly stating that a
spectrogram must be equal to the STFT of its inverse STFT. If
we focus on a single frame, this leads to the following compu-
tation. For convenience of notation, we introduce the shifted
index k = t − mR. Let us first work out the contribution of
framem. Its inverse DFT is given by

hm(k) =
1

N

N−1
X

n=0

H(m, n)ej2πn k
N (2)

which is first windowed by the synthesis windowS(k) to re-
cover a short-time signallm(k) = S(k)hm(k) that will later be
overlap-added to its neighbors to obtain the inverse STFT signal
X(t).

Similarly, for framem + q we obtain

lm+q(k) =
1

N
S(k − qR)

N−1
X

n=0

H(m + q, n)ej2πn k−qR
N . (3)

The short-time signalslm+q(k) are added, leading to the inverse
STFT of H for mR ≤ t ≤ mR + N − 1. This signal is
then windowed by the analysis windowW (k), and the DFT
is computed to obtain the STFT. By equating the result to the
original setH(m, n), we obtain a set of equations which are
the conditions we are looking for. For0 ≤ n′ ≤ N − 1,

H(m, n′) =
1

N

X

k

W (k)e−j2πk n′
N

n

S(k)

N−1
X

n=0

H(m, n)ej2πn k
N

+

Q−1
X

q=1

S(k + qR)

N−1
X

n=0

H(m − q, n)ej2πn k+qR
N

+

Q−1
X

q=1

S(k − qR)

N−1
X

n=0

H(m + q, n)ej2πn k−qR
N

o

.

(4)

By introducing the coefficients

α(R)
q (p) =

1

N

X

k

W (k)S(k + qR)e−j2πp k+qR
N − δpδq, (5)

where−(N − 1) ≤ p ≤ N − 1 andδi is the Kronecker delta
(δ0 = 1 andδi = 0 for i 6= 0), we can rewrite this set of equa-
tions as a linear system and obtain the consistency constraints
we are looking for.

Theorem. For an analysis windowW and a synthesis window
S verifying the perfect reconstruction conditions (1) for a frame
shift R, a set of complex numbersH ∈ CM×N is a consistent
spectrogram if and only if,∀m ∈ [[0, M−1]],∀n′ ∈ [[0, N−1]],

0 =

N−1
X

n=0

h

α
(R)
0 (n′ − n)H(m, n)

+

Q−1
X

q=1

ej2π qR
N

n′
α(R)

q (n′ − n)H(m − q, n)

+

Q−1
X

q=1

e−j2π qR
N

n′
α

(R)
−q (n′ − n)H(m + q, n)

i

, (6)

or more concisely:

Q−1
X

q=−(Q−1)

ej2π qR
N

n′`
α(R)

q ∗ H
´

(m − q, n′) = 0, (7)

where the convolution acts on the second parameter ofH and
the coefficientsα(R)

q are defined by (5).

The above theorem summarizes in simple mathematic
terms the fact that a consistent STFT spectrogram must be equal
to the STFT of its inverse STFT.

4. Phase reconstruction for a modified
STFT spectrogram

4.1. Objective function for phase reconstruction problems

Equation (7) represents the relation between a set of complex
numbers and the STFT of its inverse STFT. TheL2 norm of its
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left member, i.e. the difference betweenH and the STFT of its
inverse STFT,

I(H) =
X

m,n

˛

˛

˛

Q−1
X

q=−(Q−1)

ej2π qR
N

n`

α(R)
q ∗ H

´

(m − q, n)
˛

˛

˛

2

, (8)

is equal to zero for a consistent STFT spectrogram as stated in
(7), and can be considered as a criterion on the consistency of a
set of complex numbers considered as an STFT spectrogram.

In the problem of phase reconstruction, we are given a set
of real non-negative numbersAm,n which are supposedly the
amplitude part of an STFT spectrogram, for example obtained
through modifications of the power spectrum of a sound. The
goal is to estimate the phasePm,n to adjoin toA such that
Am,nejPm,n is as close as possible to be a consistent STFT
spectrogram.

Based on the above derivation, this amounts to minimizing
the objective functionI w.r.t. the phaseP , with the amplitude
A given:

Ĩ(P ) =
X

m,n

˛

˛

˛

Q−1
X

q=−(Q−1)

ej2π qR
N

nα(R)
q ∗ Am−q,nejPm−q,n

˛

˛

˛

2

,

(9)
If an estimation of the phase, for example the phase of the mix-
ture when dealing with source separation, is available, it can be
used as initial setting forP .

In [8], Griffin and Lim presented the iterative STFT algo-
rithm, which consists in iteratively updating the phaseP

(k)
m,n

at stepk by replacing it with the phase of the STFT of its in-
verse STFT while keeping the magnitudeA. The algorithm is
illustrated in Fig. 1, wherex(k+1) denotes the inverse STFT

of Am,nejP
(k)
m,n , x̂(k+1) the STFT ofx(k+1), andP

(k+1)
m,n the

phase of̂x(k+1), P
(k+1)
m,n = ∠x̂(k+1).

They showed that this procedure estimates a real signalx
which minimizes (at least locally) the distance

d(x, A) =
X

m,n

˛

˛

˛

|x̂|m,n − Am,n

˛

˛

˛

2

, (10)

i.e., the squared error between the magnitude of the STFTx̂ of
x, and the magnitude spectrogramA. As can be seen in Fig. 1,
we shall note that the objective functioñI measures a slightly
different quantity from the distance (10), but that the iterative
STFT algorithm also converges to a minimum of (9). Indeed,
both distances become equivalent near the convergence, as one
can show thatd(x(k+1), A) ≤ Ĩ(P (k)) ≤ d(x(k), A) [8].
However, the objective functioñI we introduced has the ad-
vantages to be explicit, and in its general version (8) not to be
limited to phase reconstruction problems with fixed magnitude.
We believe that, thanks to its explicitness, it provides a flexi-
ble framework to be used inside other signal processing algo-
rithms dealing with spectrograms. Here, it enables us to derive
a simplified algorithm for phase reconstruction, as we shall now
explain.

4.2. Direct optimization of Ĩ

The iterative STFT algorithm, as mentioned above, can be used
to minimizeĨ. However, this can be considered as an indirect
minimization, and it is worth looking at a direct minimization
of Ĩ through classical optimization methods. This will indeed
provide us with the freedom to modify/approximate the objec-
tive function on one hand, and to select how each bin will be

|H| = A

AejP (k)

x̂(k+1)

AejP (k+1)

Ĩ(P (k))

x̂(k)

d(x(k+1), A)

Figure 1: Illustration of the iterative STFT algorithm and the
relation between the objective functioñI and the distance
d(x, A).

dealt with on the other. For example, if only some parts of
the spectrogram must have their phase reconstructed, iterative
STFT does not allow to keep the other parts unchanged and re-
construct the phase only where it is necessary while taking into
account boundary conditions between the regions. This can be
simply performed with the framework we develop here by up-
dating only the bins whose phase is considered not reliable.

4.3. Approximate objective function and phase coherence

Here, we will make the following two approximations. We will
first neglect the influence ofPm,n in all the terms other than the
one where it corresponds to DC (i.e., where it is multiplied by
α

(R)
0 (0)). The motivation behind this first approximation is that

the coefficientα(R)
0 (0) dominates over the other coefficients.

By assuming the other phase terms fixed, we will then update
each bin’s phasePm,n so thatα(R)

0 (0)Am,nejPm,n is in oppo-
site direction with the terms coming from the neighboring bins,
while keeping its amplitudeAm,n fixed. This corresponds to
performing a coordinate descent method [9]. More precisely,
the update for bin(m, n′) is

Pm,n′ ← −s∠
“

X

(n,q)6=(n′,0)

α(R)
q (n′−n)H(m−q, n)

”

, (11)

wheres = 1 if α
(R)
0 (0) > 0 ands = −1 if α

(R)
0 (0) < 0.

Furthermore, we notice that most of the weight in the co-
efficientsα

(R)
q (p) is actually concentrated near(0, 0) (with p

considered moduloN ), as can be seen in Fig. 2 for a window
length N = 512 and a frame shiftR = 256, with a Han-
ning analysis window and a rectangular synthesis window. One
can thus approximate the consistency conditions by using only
l × (2Q − 1) coefficients instead of the totalN × (2Q − 1),
wherel ¿ N . This approximation is motivated as well by the
importance of local phase coherences, in particular the so-called
“horizontal” and “vertical” coherences, to obtain a perceptually
good reconstructed signal, and can be considered close to phase
locking techniques [6, 10, 11]. Horizontal coherence refers to
phase consistency within each frequency channel, i.e., to the
fact that in frequency bandn, phase roughly evolves at a speed
corresponding ton, and vertical coherence refers to phase con-
sistency across channels, in particular to the fact that in a time
framem, the phases at binsn andn + 1 are roughly equal.

This approximation enables us to compute directly the up-
date of each bin through the summation of a few terms, instead
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of the whole convolution which would be involved if using all
the terms. The update becomes:

Pm,n′ ← −s∠
“

X

(n,q) 6=(n′,0)
|n|≤l

α(R)
q (n′−n)H(m−q, n)

”

, (12)

where frequency indices are understood moduloN . For l = 2
and a50% overlap, for example, we only consider5× 3 coeffi-
cients.

4.4. Taking advantage of sparseness

As evoked above, using a direct optimization of the objective
function Ĩ enables us to select which bins to update. This can
be the key to deal with problems where only a part of the spec-
trogram has to have its phase reconstructed, but it can also in
general be used to lower the computational cost. Indeed, we
can use the sparseness of the acoustic signal to limit the updates
to bins with a significant amplitude, or progressively decrease
the amplitude threshold above which the bins are updated, start-
ing with the most significant bins and refining afterwards. This
idea can be related to the peak picking techniques in [6, 10].

4.5. Further simplifications

The number of operations involved in the computation of the
updates (12) can be further reduced by noticing symmetries in
the coefficientsα(R)

q . First, without any assumption on the anal-
ysis and synthesis windows, it is obvious from (5) that

α(R)
q (−p) = α

(R)
q (p). (13)

When the analysis and synthesis windows are symmetric and
such thatW (0) = 0, the coefficients have still more symme-
tries. Indeed, we notice that, from (5),

α(R)
q (p) =

1

N

N−1
X

k=0

W (k)S(k + qR)e−j2πp k+qR
N

=
1

N

N−1
X

k=0

W (N − k)S(N − (k + qR))e−j2πp k+qR
N

=
1

N

N
X

k′=1

W (k′)S(k′ − qR)ej2πp k′−qR
N

= α
(R)
−q (p), (14)

as the difference between the last two lines is1
N

(W (N)S(N −
qR)−W (0)S(−qR))e−j2πp qR

N , which is zero under the above
assumptions.

Based on these symmetries and on the fact that, for complex
numbersa, b andc, the computation of the quantityab + ac
can be performed using only4 real multiplications instead of
the 8 real multiplications required for the general sum of two
products of two complex numbers, we can reduce the number
of multiplications involved in the computation.

4.6. Optimization of the analysis/synthesis windows

As the updates (12) are approximate versions of the updates
(11) based on the observation that the weight in the coefficients
α

(R)
q (p) is concentrated in small values ofp (moduloN ), find-

ing analysis and synthesis windows which concentrate as much
weight as possible in a given range of coefficients can lead to a

q

p

-1 0 1

8

4

0

-4

-8

Figure 2: Magnitude of the central coefficientsα
(R)
q (p) for

N = 512, R = 256, a Hanning analysis window and a rect-
angular synthesis window.

100 200 300 400 500
0

0.5

1

Sample

A
m

p
lit

u
d
e

 

 
Opt.
Sqrt H.

Figure 3: Comparison of the optimized window and the square
root Hanning window forN = 512, R = 256 andl = 2.

q

p

-1 0 1

8

4

0

-4

-8

Figure 4: Magnitude of the central coefficientsα
(R)
q (p) for

N = 512, R = 256, and a square root Hanning analysis and
synthesis window.

better approximation. We investigated this idea and performed
an optimization of the analysis/synthesis windows for a50%
overlap and forl = 2, to maximize theL2 norm of the5×3 co-
efficients considered, assuming the analysis and synthesis win-
dows were equal and symmetric. Quite remarkably, the window
we obtained was very similar to the square root of the Hanning
window, as can be shown in Fig. 3 for a window length of512
samples. We thus used the square root of the Hanning window
in the experiments we conducted. The central coefficients for
this window are shown in Fig. 4.

4.7. Time-scale modification

4.7.1. Need for an efficient frequency-domain algorithm

Many methods for time-scale and pitch-scale modification of
acoustic signals have been proposed, and the interest on this
subject intensified in recent years with the increase in the com-
mercial application of such techniques. So far, most com-
mercial implementations rely on time-domain methods, usu-
ally variations on Synchronous Overlap and Add (SOLA) or
Pitch Synchronous Overlap and Add (PSOLA) techniques [12].
Their advantages are a low computational cost and good qual-
ity results for small modification factors (smaller than±20% or
±30%) and monophonic sounds. For larger factors, polyphonic
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sounds or nonpitched signals, however, the quality of the results
drops severely. On the other hand, frequency-domain methods,
such as the phase vocoder [13], are not limited to such con-
straints, but they involve a much higher computational cost and
introduce artifacts of their own [6]. These artifacts have been
shown to be mainly connected to phase incoherences, and spe-
cial care must thus be taken when estimating the phases in the
modified signal’s STFT spectrogram. The iterative STFT algo-
rithm of Griffin and Lim has been proposed as a way to correct
such phase incoherences, although the computational cost and
the slow speed of convergence have been obstacles to its adop-
tion in commercial applications. The algorithm we introduced
is a flexible alternative to iterative STFT, and by an active use
of sparseness and the reduction of the number of multiplications
involved at each step, should lead to a lower computational cost.

4.7.2. Sliding-block analysis for real-time processing

Inspired by an idea in [14], we derive a real-time optimization
scheme for the objective function introduced above based on
a sliding-block analysis. As illustrated in Fig. 5, the spectro-
gram is not processed all at once, but progressively from left to
right, making it possible to change the parameters while sound
is being played. In the particular case of time scale modifica-
tion, this leads to the following procedure. The waveform to
be time-scaled is readN samples at a time, whereN is the
window length. The STFT transform of this incoming frame
is computed and adjoined to the frames of STFT spectrogram
already computed, at the extreme right. If the block size is
set to b and the frame shift toR, at a given time, we keep
b + 2Q frames, whereQ = N/R is the number of overlapping
frames: theb central frames are updated using the algorithm
derived above, through update equations (12), while theQ al-
ready processed frames on the left and theQ yet to be processed
frames on the right are kept fixed and only used in the compu-
tations of the updates of theb central frames. Once the update
has been performed, the frames are shifted to the left, and the
frame which just exited the central block is inverse-DFTed and
overlap-added, after windowing by the synthesis window, to the
already computed part of the time-scaled waveform. The de-
termination of the start of the nextN sample part of incoming
signal to be read is made in accordance with the time scale mod-
ification factorf such that the average shift for the incoming
signal isfR, while keeping an integer shift at each step. The
procedure is then iterated. The number of iterations performed
on each frame is equal to the block size.

4.7.3. Experimental evaluation

We implemented the proposed method and the iterative STFT
algorithm and compared their convergence speed on the time-
scale modification of the first 23s of Chopin’s Nocturne no.2.
The time-scale modification factor was set to0.7, the frame
length to 1024 and the frame shift to 512, for a final length
of approximately 32s. We used a5 × 3 approximation of the
coefficientsα(R)

q (p) for our algorithm. We ran our algorithm in
two different experimental conditions, one where all the bins are
updated at each iteration, and the other relying on sparseness,
where at iterationk, only bins whose amplitude is larger than
Ae−Bk are updated. Here, we usedA = 1 andB = 0.005,
which were determined experimentally.

A comparison of the speed of convergence w.r.t. the num-
ber of iterations (or, equivalently, the block size) is shown in
Fig. 6. The objective functionI(H) is used as a measure of

Figure 5: Illustration of the sliding-block analysis principle.

Figure 6: Comparison of the evolution of the inconsistency
measureI(H) for the iterative STFT algorithm and the pro-
posed method.

convergence, and represented in decibels, with the initial value
as a reference. One can see that, although our algorithm is based
on an approximation of the original objective functionI(H), it
outperforms the iterative STFT algorithm in terms of speed of
convergence w.r.t. the number of iterations. The sparse version
of our method has a slower convergence speed, close to the iter-
ative STFT algorithm. This could be expected as only a part of
the bins are updated. We also compared the computation times
of the three methods, measuring only the time required by the
phase reconstruction part of the algorithm as the other parts are
identical. With our implementations, for200 iterations, the iter-
ative STFT algorithm took35.4s, our method with full updates
31s, and our method using sparseness2.5s. In terms of flexibil-
ity, speed of convergence and computation time, our algorithm
thus outperforms the iterative STFT algorithm.

5. Audio encryption based on inconsistent
STFT spectrograms

We can design a family of encryption codes based on any per-
fect reconstruction analysis/synthesis window couple by using
a jammer in the STFT space. The key idea here is that, start-
ing from any set of complex numbersH ∈ CM×N , one can
build an inconsistent STFT spectrogram with non-zero “energy”
such that its inverse STFT is identically zero. In other words,
for a given frame shiftR and any perfect reconstruction anal-
ysis/synthesis window couple, there exists a family of sets of
complex numbers inCM×N whose inverse STFT is identically
silence. Indeed, starting fromH ∈ CM×N , letxH be its inverse
STFT signal. The STFTXH of xH is a consistent spectro-
gram, whose inverse STFT is alsoxH . Thus the inverse STFT
of XH −H is identically0, although in general theL2 norm of
XH − H is not. The important point to note here is that this is
only true for the synthesis window which was used in building
XH , and that in general for any other window the inverse STFT
will not lead to silence.

We can apply this procedure to a set of random com-
plex numbers to obtain a very “noisy” inconsistent spectrogram
which, with the correct synthesis window, leads to silence when
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Figure 7: Magnitude of the inconsistent spectrogram.
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Figure 8: Waveform of the inverse STFT of the inconsistent
spectrogram using a Hanning window.
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Figure 9: Waveform of the inverse STFT of the inconsistent
spectrogram using the correct square root Hanning window.

inverse STFT-ed. Now, if this inconsistent noisy spectrogram,
multiplied by a large coefficient, is added to the coherent spec-
trogram (built using the same window couple) of a speech or
music sound for example, we obtain a set of complex numbers
in which the power coming from the speech or music sound
is masked and hardly detectable. An example of the magni-
tude of such a spectrogram is shown in Fig. 7, with the square
root Hanning window as analysis/synthesis window, a window
lengthN = 512 and window shiftR = 256. The random set
of complex numbers was generated by randomly modifying the
phase of the spectrogram of a Gaussian white noise signal with
standard deviation1. Multiplied by a coefficient100, it was
added to the spectrogram of a computer generated music piece
consisting of a mixture of piano and trumpet with a 16kHz sam-
pling rate [3]. If the inverse STFT is performed with a different
window than the one used to build the jammer spectrogram, the
obtained signal is more or less noise. This can be seen in Fig. 8
where the inverse STFT of the spectrogram in Fig. 7 is com-
puted using the Hanning window, leading to a Signal to Noise
Ratio (SNR) of about−30dB. However, if the correct synthesis
window is used, the jammer part of the spectrogram cancels off
and the original speech or music sound is perfectly recovered
(i.e., up to quantization error), as shown in Fig. 9. The synthesis
window function thus acts as a key to decrypt the spectrogram
and retrieve the hidden message.

Another way to produce interesting results, whose potential
should be further investigated, is to start with an audio signal
(white noise was used above, but speech or music can also be
used), randomly change the phase of its STFT, and use the ob-
tained set of complex numbers as a root for the procedure. The
“hidden” sound can be heard for the correct window, while for
other windows a distorted version of the root will be heard.

Although such issues as dynamic range limitation or code-
breaking by a window optimization based on the minimization
of the output power should be considered, we are now consider-
ing the potential applications of this technique as an encryption
system.

6. Conclusion
We derived explicit consistency constraints for STFT spectro-
grams and showed how they could be used to develop a flexible
phase reconstruction algorithm. We applied this algorithm for
time scale modification, and explained how to perform a real-
time processing based on sliding-block analysis. Finally, we
showed how inconsistent STFT spectrograms could be used to
hide sounds in the spectrogram domain.

Future works include the derivation of similar constraints
for other transforms, such as the constant-Q transform, and the
application of the proposed method to phase reconstruction of
spectrograms whose phase is partially reliable, such as in gap
interpolation problems [7]. We shall also consider using differ-
ent schemes for the selection of the bins to update, for example
by using different selectivities depending on the frequency.
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S. Sagayama, “Computational auditory induction by missing-data
non-negative matrix factorization,” inProc. SAPA, Sep. 2008.

[8] D. W. Griffin and J. S. Lim, “Signal estimation from modified
short-time Fourier transform,”IEEE Trans. Acoustics, Speech,
and Signal Proc., vol. 32, no. 2, pp. 236–243, Apr. 1984.

[9] W. I. Zangwill, Nonlinear Programming: A Unified Approach.
Englewood Cliffs, NJ: Prentice Hall, 1969.

[10] T. Karrer, E. Lee, and J. Borchers, “PhaVoRIT: A phase vocoder
for real-time interactive time-stretching,” inProc. ICMC, Nov.
2006, pp. 708–715.

[11] M. S. Puckette, “Phase-locked vocoder,” inProc. WASPAA, 1995.

[12] E. Moulines and J. Laroche, “Non-parametric techniques for
pitch-scale and time-scale modification of speech,”Speech Com-
munication, vol. 16, pp. 175–206, 1995.

[13] M. Dolson, “The phase vocoder: A tutorial,”Comput. Music J.,
vol. 10, pp. 14–27, 1986.

[14] N. Ono, K. Miyamoto, H. Kameoka, and S. Sagayama, “A real-
time equalizer of harmonic and percussive components in music
signals,” inProc. ISMIR 2008, Sep. 2008.

28Statistical and Perceptual Audition (SAPA 2008)


