Integration of Asynchronous Knowledge Sources in a Novel Speech Recognition Framework

Prof. Hugo Van hamme
K.U.Leuven, dept. ESAT, Belgium

ITWR workshop
Aalborg, Denmark
4 June, 2008

Outline

• Motivation
• Training / pattern discovery with NMF
 – Input representation
 – Weak supervision
 – Multiple information sources
• Recognition
• Experiments
• Conclusions
Motivation

- ASR systems are engineered
 - Complex statistical models
 - Engineered layers
 - Sentence\leftrightarrowWord\leftrightarrowPhoneme\leftrightarrowState\leftrightarrowSpectra
 - Speech variability does not always follow this structure
 - Pronunciation variation
 - Co-articulation
- Can we automatically discover acoustic patterns?
 - Method based on matrix factorization
 - Here:
 - Only the first two layers
 - Integrate knowledge sources at different time scales
 - ACORNS project (EC – FET – STREP)

Input representation

- Input = symbolic, discrete
- Uncertainty\Rightarrowgraph
 - Edges: symbol with probability
 - Nodes: labeled by time
- Graph types:
 - Chain: e.g. VQ of spectra
 - Chain with multiple options, e.g. soft VQ
 - Lattice: e.g. phone lattice
- Time labels of nodes
 - Fixed step: e.g. VQ of spectrum
 - Variable: change-directed segments or phone decoder
Map to a vector space: HAC

- Directed edge co-occurrence
 - Edge A comes after edge B at distance τ with joint probability
 - Accumulate joint probability in a vector
 - For all pairs A,B
 - Over complete graph
 - Note: NOT symmetric in A and B
 - Weakly describes what comes in which order
- Shift-invariant representation

- Fixed-size vector representation of a graph
 \(w_i = \text{HAC}(\Omega_i) \)

\[\Omega_i \]

A (bi)linear generative model

- Take \(R \) graphs \(\Omega_1, \ldots, \Omega_R \)
- Cascade them ⇒ \(\Omega \)
 \[\text{HAC}(\Omega) = \text{HAC}(\Omega_1) + \ldots + \text{HAC}(\Omega_R) \]
 \[w = [w_1 \ldots w_R] h = Wh \]

- Why \(\approx \) ?
 - Cross-graph terms

Conclusion:
- If \(w_1 \ldots w_R \) are HACs of “words”
- \(h \) indicates presence/absence of words
- \(v \) is HAC representation observed “utterance”
- \(v \approx [w_1 \ldots w_R] h = Wh \)
- \(\approx \) noisy observation of utterance graph
Word/pattern discovery by NMF

- Take T utterances containing a vocabulary W
 - $V_i = W h_i$...
- In matrix form $V = WH$
 - $V = [v_1 ... v_T]$ and $H = [h_1 ... h_R]$

- Non-negative matrix factorization:
 - V, W: sum of co-occurrence probs ≥ 0
 - H: word activations ≥ 0
 - \approx translated as MSE (Frobenius norm) or divergence

\[
D(V || WH) = \sum_{i,j} V_{ij} \log \frac{V_{ij}}{WH_{ij}} - V_{ij} + WH_{ij}
\]

- Algorithms available:
 - Multiplicative updates used here

Weakly supervised training

- Per utterance, word identities are given
 - Order not important
 - Not all words need to be tagged
 - Weak supervision
- $[G]_{it} = \#$ times word i occurs in utterance t

- Generative model:
 - $[W]_{ir} = 1$ iff pattern r is associated with tag i
 - $G = WH$ with same H as acoustics
- Put together:

\[
\begin{bmatrix} G \\ V \end{bmatrix} \approx \begin{bmatrix} W_k \\ W \end{bmatrix} H
\]

- Conclusion: upper rows of estimated left factor (W) now gives relevance of a discovered pattern to tag \Rightarrow **grounding** relation
Multiple information sources

- Handle different lags $\tau_1 \ldots \tau_Q$ simultaneously
 - All sources share the same H
 - No explicit alignment between sources required

$$V = \begin{bmatrix} G \\ V_{\tau_1} \\ \vdots \\ V_{\tau_Q} \end{bmatrix} \approx \begin{bmatrix} W_g \\ W \\ H \end{bmatrix}$$

Recognition

- estimate pattern activations H in:

$$V_{\tau_i} \approx W H$$

- compute tag activations:

$$A = W_g H$$

- A predicts G, i.e. the number of times a word occurs in a sentence
- Activation, not decoding
 - No segmentation
 - No order
Experiments (1)

- **TIDIGITS**
 - Digit strings length 2 through 7
 - 6159 train; 6214 test
 - 11 digits; \(R = 12 \)
- **Knowledge source 1: Phone lattices**
 - Generated with HMM triphone models
 - \(\tau = 1 \)
 - \(\mathcal{V} \) has 1936 \((=4^2) \) rows
- **Knowledge source 2 through 4: VQ-spectra**
 - MFCC’s extracted every 10ms
 - Statics, velocity, acceleration
 - \(\tau = 2, 5 \) or 10
 - Codebook size 150, 150, 100 designed by K-means
 - \(\mathcal{V} \) has 55000 rows

Experiments (2)

<table>
<thead>
<tr>
<th>segmental</th>
<th>frame synchronous</th>
<th>WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{V}_1)</td>
<td>(\mathcal{V}_2)</td>
<td>(\mathcal{V}_3)</td>
</tr>
<tr>
<td>phone</td>
<td>VQ</td>
<td>VQ</td>
</tr>
<tr>
<td>(\tau = 1)</td>
<td>(\tau = 2)</td>
<td>(\tau = 5)</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

- **WER:**
 - Which \(N \) different digits are in this utterance?
- **Top part:**
 - VQ only, no phone lattice
 - More sources give better accuracy
- **Middle part:**
 - Phone only comparable error rate
- **Bottom part**
 - All sources together give best error rate
Convergence

- NMF does not always yield same result
- Scatter plot of WER vs. final divergence during training
- Non gives an invalid solution
- 3 to 5 trials and selecting lowest divergence works

Conclusions

- HAC + NMF can work in an unsupervised or weakly supervised mode
- Activation-based recognition rather than decoding/search
- Straightforward integration of features at different time scales:
 - 10ms, 20ms, 50ms, 100ms and phone level
 - Copes well with the high dimensions
- No segmentation of words
 - Like humans
- Some challenges:
 - Cyclic repetitions give almost same HAC
 - No word order
 - “bag of words” representation
 - Order can be found (IS08)
 - Will it scale up?