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Abstract
This paper describes the Speaker Diarization system jointly de-
veloped by the Computational Learning and Imaging Research
(CLIR) laboratory of the Universidad Autónoma de Yucatán
and the Center for Language and Speech Processing (CLSP)
of the Johns Hopkins University for the Albayzin Speaker Di-
arization and Identity Assignment Challenge organized in the
IberSPEECH 2020 conference. The Speaker Diarization system
follows an x-vector-PLDA-VBx pipeline built with the Kaldi
toolkit. It uses a Time Delay Neural Network (TDNN)-based
Speech Activity Detector (SAD), with x-vectors as acoustic
features, clustered with Agglomerative Hierarchical Clustering
(AHC) as initialization for variational Bayes clustering. The
system was only evaluated in the Speaker Diarization condition.
Index Terms: speaker diarization, time delay neural network,
x-vector, vbx

1. Introduction
IberSPEECH’s Albaizyn evaluation challenges cover a wide
range of speech processing technologies that include speech-
to-text transcription, search on speech, and speaker diarization,
with the latter being the subject of this paper. Speaker diariza-
tion is the process of grouping the same speaker’s utterances in
an audio recording under the same label with no prior knowl-
edge of the number nor identity of the intervening speakers.
It is an essential preprocessing step for many speech applica-
tions, such as Automatic Speech Recognition (ASR), spoken
document retrieval, or audio indexing [1]. Therefore, the im-
provement of speaker diarization technologies is crucial to per-
form adequately in real-world conditions. The IberSPEECH-
RTVE Speaker Diarization and Identity Assignment Challenge
calls for robust speaker diarization systems for real TV broad-
cast shows from a range of topics on the Spanish public net-
work [2, 3].

In the previous Albaizyn evaluation, five teams submitted
systems for the open-set speaker diarization condition. The
ODESSA team [4] explored three different segment represen-
tation embeddings: Binary key, Triplet-loss, and x-vectors;
trained with the challenge’s data [5], NIST SRE, and Vox-
Celeb1, respectively. Their primary submission consisted of
fusing at similarity matrix level three systems, one for each em-
bedding type and clustering with AHC. This was possible as
they shared the same 1-second segmentation.

The JHU team [6] also leveraged score fusion at similarity
matrix level. They addressed four types of embeddings extrac-
tors: x-vector-basic, x-vector-factored, i-vector-basic, and bot-
tleneck features (BNF) i-vector. The first extractor was trained
on VoxCeleb1 and 2 with augmentations; the second one with
SRE12-micphn, MX6-micphn, VoxCeleb and, SITW-dev-core;

the third one with VoxCeleb1 and 2 with no augmentations;
and the last one with the same data as x-vector-factored. Their
pipeline used a TDNN-based SAD and Probabilistic Linear Dis-
criminant Analysis (PLDA) trained with Albayzin2016 data.
The four embeddings’ similarity scores were fused on equal
weights and clustered with AHC.

Our system follows the conventional diarization pipeline [7,
8, 9], described as follows: (1) Segmentation: in this step, the
non-speech portions of the recording are removed, and the re-
maining speech regions are further cut into short segments. The
system leverages a pre-trained, publicly available SAD1 based
on a TDNN with stats pooling. (2) Embedding extraction: in
this step, the system extracts speaker-discriminative embedding
for each segment; the submitted system uses x-vectors. (3)
Clustering: after an embedding is extracted from each segment,
the segments are grouped into different clusters; our system was
tested with three different PLDAs based on in- and out-domain
data, with AHC as initialization for variational Bayes cluster-
ing.

The paper is organized as it follows: in Section 2 the used
databases are described. Section 3 further describes the system
characteristics, and Section 4.1 presents the computational re-
sources used.

2. Datasets
Four datasets were used to develop our speaker diarization sys-
tem:

• VoxCeleb1: a large-scale speaker identification dataset
with 1,251 speakers and over 100,000 utterances, col-
lected ”in the wild” [10].

• VoxCeleb2: a speaker recognition dataset that contains
over a million utterances from over 6,000 speakers under
noisy and unconstrained conditions [11].

• DIHARD II: focused on ”hard” speaker diarization, con-
tains 5-10 minute English utterances selected from 11
conversational domains, each including approximately 2
hours of audio [12].

• The Corporación Radiotelevisión Española (RTVE)
speaker diarization database [3]: consists of around 70
hours of audio documents annotated in terms of speaker
turns. A 41% of the database is used for evaluation pur-
poses with no a priori information provided about the
number of speakers. The remaining 59% consists of a
collection of 8 different TV shows by the Spanish TV
station provided in 3 partitions that can be used for sys-
tem training and development.

1http://kaldi-asr.org/models/m12
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The x-vector extractor model for the speaker diarization condi-
tion was trained using VoxCeleb1+2 augmented with DIHARD
II data. The three tested PLDA models were developed as fol-
lows: The first PLDA model uses a mixture of the DIHARD
II dev and RTVE 2018 datasets, augmented with MUSAN [13]
noises and reverberation; the second one was trained with Vox-
Celeb1+2 data, with the last PLDA being the weighted interpo-
lation of the previous two.

3. System overview
This section describes the components that comprise the devel-
oped speaker diarization system.

3.1. Speech activity detection

In order to extract speech segments, our system uses a pre-
trained TDNN-based SAD model1. The model was developed
with the CHiME-6 training data [14]; such data was recorded
in real-life conditions containing large amounts of background
noise and overlapping speech. The SAD neural network archi-
tecture employs high-resolution Mel-Frequency Cepstral Coef-
ficients (MFCC) as input, extracted for a 25ms window with a
10ms frame rate; with average log of energy, 40 mel-frequency
bins, and a low cutoff frequency mel bins of 40. The network
consists of 5 TDNN layers and two layers of statistics pool-
ing [15]; trained with cross-entropy objective function to pro-
duce speech and non-speech labels. The speech labels include
clean voice and voice with noises. Music, noise, and silence are
categorized as non-speech. SAD labels are obtained by Viterbi
decoding using an HMM with minimum duration constraints of
0.3 s for speech and 0.1 s for silence. We also tried energy-based
SAD, but it was discarded as it performed worse overall.

3.2. Embeddings

We explored two types of embeddings. The first one, i-vectors;
following the default Kaldi recipe for DIHARD, we trained a
T-matrix with RTVE 2018-only data; afterward, we extracted
i-vectors from the RTVE 2020 dataset and obtained baseline
results. These i-vectors were of dimension 128.

The second type of embeddings we tested was x-
vectors [16, 17]. We explored two methods to compute them;
first, we followed the default Kaldi recipe for DIHARD, us-
ing VoxCeleb1+2 and RTVE 2018 with additional augmenta-
tion using MUSAN noises2 as described in [13], to train the
TDNN-based embedding extractor. This method passes each
MFCC through a sequence of TDNN layers. A pooling layer
computes the mean and standard deviation of the TDNN out-
put over time, accounting for the utterance level process, with
this internal representation (the x-vector) projected to a lower
dimension. The DNN output is the training speakers’ posterior
probabilities, with the objective function being cross-entropy.

We used a TDNN-based extractor that uses 40-dimensional
filterbanks with a 25ms window and 15ms frame shift as acous-
tic features for the second approach. These features are used
for the embedding extraction as in [7]. The x-vector extractor
model was trained using a TDNN with a 1.5s window with a
frame shift of 0.25s; its architecture consists of four TDNN-
ReLU layers, each of them followed by a dense-ReLU; after-
ward, two dense-ReLU layers are incorporated before a pooling
layer; with a final dense-ReLU incorporated from which 512-
dimensional embeddings are extracted. Then, a dense-softmax

2http://www.openslr.org/resources/17

provides the output layer for this TDNN architecture.

Table 1: x-vector extractor architecture [18].

Layer Layer context

frame 1 [t - 2, t - 1, t, t + 1, t + 2]
frame 2 [t]
frame 3 [t - 4, t - 2, t, t + 2, t + 4]
frame 4 [t]
frame 5 [t - 3, t, t + 3]
frame 6 [t]
frame 7 [t - 4, t, t + 4]
frame 8 [t]
frame 9 [t]
stats pooling (frame7, frame9) [0, T]
segment1 [0, T]
softmax [0, T]

3.3. PLDA scoring

As mentioned in Section 2 we tested our system with three dif-
ferent PLDA models; the first one was trained on a mixture
of both DIHARD II dev and RTVE 2018 data augmented with
MUSAN [13] noises and reverberation. The second PLDA used
VoxCeleb1+2 out-of-domain data for training. For our third
PLDA model, we followed [18]; this method aims to compute
a robust PLDA based on the mixture of in-domain and out-of-
domain PLDAs. This PLDA results from a weighted interpo-
lation of the VoxCeleb1+2 out-of-domain data PLDA and the
in-domain RTVE 2018+DIHARD II dev mixture PLDA. Both
PLDAs were centered, whitened, and length normalized using
the RTVE 2018+DIHARD II dev mixture data. Finally, the x-
vectors were projected from 512 dim to 220 using Linear Dis-
criminant Analysis (LDA).

3.4. Clustering

Using the similarity scores from one of the PLDAs, an Agglom-
erative Hierarchical Clustering (AHC) algorithm creates a set of
clusters with an overestimation in the number of speakers. The
VBx [19] uses the AHC initialization to make a further refine-
ment of the clusters. VBx eliminates redundant speakers across
the recording; it can be tuned by modifying the regulation coef-
ficient (aggressiveness of eliminating redundant speakers), the
acoustic scaling factor, and the loop-probability (staying in the
same state when getting the next observation). The values used
for our system are 0.4, 11, 0.80, respectively.

4. Experiments
This section describes some of the experiments that took place
during our system’s development process. We evaluated our
systems using two metrics; the first one was Diarization Error
Rate (DER), the most common metric for speaker diarization.
DER comprises four types of errors: speaker error, false alarm
speech, missed speech, and overlap speaker. Our DER followed
the IberSPEECH-RTVE’s evaluation plan characteristics, hav-
ing a forgiveness collar of ±0.25 s before and after each refer-
ence boundary; and consecutive segments of the same speaker
with a silence of less than 2 s come together as a single segment.
The second metric that gave us an idea of the systems’ perfor-
mance was speaker number error; it allowed us to observe how
each system estimated the number of speakers for each record-
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Table 2: DER (%), speaker error (SE) (%), missed speaker (MS) (%), false alarm (FA) (%) and speaker number error (%) comparison
of different setups for the RTVE dev dataset (post-submission results are in bold letters). The speaker number error is the mean absolute
error of the inferred number of speakers per recording.

System alpha, fa, fb, p DER SE MS FA Speaker # error

i-vectors + DIHARD/RTVE PLDA + AHC - 85.55 29.05 48.00 8.50 82.70
x-vectors + DIHARD/RTVE PLDA + AHC - 80.19 63.29 5.00 11.90 75.98
x-vectors + DIHARD/RTVE PLDA + AHC (oracle # speakers) - 86.51 69.61 5.00 11.90 0.00
oracle SAD + PLDA mixture + AHC+ VBx 0.55, 0.40, 11, 0.80 15.86 14.56 1.30 0.00 34.89
x-vectors + PLDA mixture + AHC + VBx 0.55, 0.40, 11, 0.80 34.61 17.71 5.00 11.90 37.74
x-vectors + DIHARD/RTVE PLDA + AHC + VBx 0.10, 0.40, 11, 0.80 43.55 26.60 5.00 11.90 51.78
x-vectors + VoxCeleb PLDA + AHC + VBx 0.10, 0.40, 11, 0.80 22.77 5.80 5.00 11.90 14.17
x-vectors + PLDA mixture + AHC - 32.74 15.80 5.00 11.90 76.20
x-vectors + PLDA mixture + AHC + VBx 0.10, 0.40, 11, 0.80 30.33 13.43 5.00 11.90 28.44

Table 3: DER (%), speaker error (%), missed speaker (%), false alarm (%) and speaker number error (%) comparison of different
setups for the RTVE test dataset (post-submission results are in bold letters).

System alpha, fa, fb, p DER SE MS FA Speaker # error

x-vectors + DIHARD/RTVE PLDA + AHC - 68.06 57.56 4.40 6.10 80.90
x-vectors + PLDA mixture + AHC + VBx 0.55, 0.40, 11, 0.80 39.48 29.08 4.30 6.10 49.82
x-vectors + DIHARD/RTVE PLDA + AHC + VBx 0.10, 0.40, 11, 0.80 36.03 25.60 4.30 6.10 48.50
x-vectors + VoxCeleb PLDA + AHC + VBx 0.10, 0.40, 11, 0.80 27.63 17.20 4.30 6.10 27.07
x-vectors + PLDA mixture + AHC - 34.76 24.30 4.30 6.10 58.81
x-vectors + PLDA mixture + AHC + VBx 0.10, 0.40, 11, 0.80 32.69 22.29 4.30 6.10 37.90

ing; this was useful alongside DER during VBx parameter op-
timization.

The DER and speaker number error results of different se-
tups for RTVE 2020 dev and test datasets are shown in Table 2
and Table 3, respectively. The initial part of our experiments
followed a similar strategy to the Kaldi Callhome diarization
recipe [20], for i-vectors, we used the RTVE 2018 dataset to
train the extractor and PLDA models, and for x-vectors, we
added VoxCeleb1+2, as the extractor model requires more data
during training; then we tuned the AHC threshold with RTVE
2018 in order to use it to compute performance on the RTVE
2020 dev dataset. As shown in Table 2, the first x-vector-
based system outperformed the i-vector-based one, which is ex-
pected, so we discarded further experimentation with i-vectors.
It should be noted that, in both cases, the estimated number of
speakers performed poorly, so we tested the AHC with an oracle
number of speakers. Such a test was performed only for refer-
ence reasons, as in the final submission, the number of speakers
per recording in the test dataset is unknown. We expected that
the AHC with an oracle number of speakers would deliver better
results, but it was not the case. We believe that unlike traditional
speaker diarization datasets, the utterances in the RTVE datasets
contained numerous speakers. Since the recordings are from
TV broadcast shows, there is an imbalance of speaker corpus
(e.j. RTVE 2020 test mean and standard deviation of speaker
time: 345s and 838s, respectively). We tested using an energy
SAD early in development, but its lousy performance in such
conditions directly affected the DER performance; we immedi-
ately moved to the pre-trained TDNN SAD model, and it pro-
vided better performance by a large margin. Additionally, we
provide results with an oracle SAD; despite the oracle segmen-
tation, the speaker number inference error is almost the same,
which indicates that it is due to the clustering strategy, as it un-
derestimates how many speakers there are per utterance. We

cannot blame the VBx aggressiveness of redundant speakers re-
moval, as the pre- and post-submission experiments without it
suffer the same underestimation problem. We believe the AHC
may not be the best method in conditions with many speakers;
further studies are required.

Table 3 presents the results of our submitted systems; the
first one was our contrastive setup; its AHC threshold was cali-
brated using the RTVE 2020 dev dataset; we can see that it had
similar results to its counterpart in Table 2. The second one was
our primary system; its VBx parameters were manually cali-
brated using the RTVE 2020 dev dataset. Post-submission ex-
periments show that our primary system could have performed
better with a considerable change in the VBx alpha, obtaining
a 6.79% absolute improvement in DER; furthermore, with the
PLDA mixture’s replacement with the VoxCeleb1+2 one, it ob-
tains an additional 5.06% improvement. It is clear that our DI-
HARD II dev + RTVE 2018 PLDA hindered our mixture re-
sults; the addition of DIHARD II dev and heavy augmentations
(reverberation and noises) most probably caused this.

4.1. Development resources

We conducted our experiments on the CLSP Cluster3 on several
Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz nodes using up
to 54 threads with 60 GB of RAM, and an NVIDIA GeForce
GTX 1080 Ti with 11 GB of VRAM; Our submitted system
took 35 hours for training and 15 hours to infer the RTVE test
results.

5. Discussion
The x-vector-based system obtained our best results with an out-
of-domain PLDA and VBx clustering. However, it falls behind

3http://www.statmt.org/jhu/?n=Info.CLSPCluster
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our expected performance; we blame our heavy usage of out-
of-domain-trained modules. Specifically, the x-vector extractor
model, as previously mentioned, the RTVE dataset has specific
peculiarities that differentiate it from standard speaker diariza-
tion datasets. The same can be said about the used TDNN SAD,
as it was an out-of-the-box pre-trained model.

Our system would also be benefited from a better VBx pa-
rameter calibration, as shown in the post-submission results in
Table 2 and Table 3. It should be noted that the usage of varia-
tional Bayes clustering greatly improved the system’s ability to
infer the number of speakers per recording, improving the DER.

6. Future work
Although we used a state-of-the-art approach for speaker di-
arization, we have room for improvements:

• We have to test domain-specific and hybrid approaches
for the TDNN SAD model training, as its quality is di-
rectly associated with the diarization performance.

• In-domain data should be used for the x-vector extractor
model training.

• Our system cannot handle overlapping speech, as it pro-
duces a single label per segment.

• Improve the system’s speaker number inference in con-
ditions such as the challenge’s, where there are many
speakers with imbalanced occurrences.

7. Conclusions
In this paper, we described our submission for the
IberSPEECH-RTVE 2020 Speaker Diarization and Identity As-
signment Challenge; we tested a state-of-the-art approach for
diarization in a challenging Broadcast News scenario. We as-
sessed the effectiveness of variational Bayes clustering as it sig-
nificantly improved our system’s ability to infer the number of
speakers.
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