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Abstract 
 
We address the problem of estimating the word error rate 
(WER) of an automatic speech recognition (ASR) system 
without using acoustic test data. This is an important problem 
which is faced by the designers of new applications which use 
ASR. Quick estimate of WER early in the design cycle can be 
used to guide the decisions involving dialog strategy and 
grammar design. Our approach involves estimating the 
probability distribution of the word hypotheses produced by 
the underlying ASR system given the text test corpus. A 
critical component of this system is a phonemic confusion 
model which seeks to capture the errors made by ASR on the 
acoustic data at a phonemic level. We use a confusion model 
composed of probabilistic phoneme sequence conversion 
rules which are learned from phonemic transcription pairs 
obtained by leave-one-out decoding of the training set. We 
show reasonably close estimation of WER when applying the 
system to test sets from different domains. 

1. Introduction 
The performance of an ASR system is closely tied to the 

training data used to train the acoustic model and the 
language model (LM). Consequently, in certain task domains, 
the speech recognition system will perform better than in 
other task domains. In order to determine how ASR system 
will work in a particular task domain, transcribed acoustic test 
data for that domain is needed, in addition to the dictionary 
and LM for the domain. Collecting a sufficient amount of 
transcribed acoustic test data to determine the error rate of the 
system is expensive and time-consuming and forms a barrier 
to developing speech enabled computer applications. 

We assume that representative text data from the test 
domain is available. Given this, one solution would be to use 
lexical perplexity. However, lexical perplexity cannot be 
directly translated into word error rate (WER). This could be 
due the fact that it ignores the acoustic confusability of the 
words in the text and the base WER of ASR. For a given LM, 
it is possible to have poor correlation between WER and 
perplexity as shown in [1]. 

Fig. 1 shows block diagram of ASR operation at a very 
abstract level. Speaker speaks the intended word sequence Wc 
creating an acoustic realization A which is then decoded by 
ASR into hypothesis Wh. 
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gure 1: High-level block diagram of ASR process 

should be noted that the mapping from Wc to A is one-
ny due to speaker and acoustic channel variation. 
ing from A to Wh is deterministic many-to-one mapping 
given ASR system with fixed parameters. In other 

, many acoustic realizations get mapped to the same 
sequence but a given acoustic realization always gets 

ed to the same word sequence. 
 this paper, we describe a system which we call “Text 
er” which can simulate ASR without acoustic data. Fig. 

ws a block diagram of the Text Decoder. Text Decoder 
ore encapsulates the speech production and ASR 
ss as a black box. 

 

ure 2: High-level block diagram of text decoding 

 order to faithfully simulate the mapping from Wc to 
ext Decoder needs to take into account all the acoustic 
ations which are possible and to estimate the mapping as 
ability distribution. 

eing able to simulate ASR has other applications besides 
 estimation as well. Available acoustic training data is 
lly a small fraction of the text training data. 
minative LM training can use the larger amount of text 
if the confusing word sequences which need to be 
minated against can be predicted. Ability to predict the 
 made by ASR may also lead to quicker identification of 
rts of ASR system which need improvement. 
ction 2 describes the framework which we use to 
te WER. Section 3 describes the structure and training 

nfusion Model. Section 4 describes the search algorithm 
 Text Decoder. Section 5 contains the experimental 

s followed by conclusions in Section 6.  

2. WER estimation framework 

iven the joint probability distribution ( ), ,c hP W A W  for 
WER can be calculated as: 
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where, ( ),h cErrCount W W is the number of word errors 

obtained by aligning the word sequences. For notational 
convenience, we treat A as being discrete even though it is 
actually a continuous variable. This can be re-written as: 

( ) ( ),( ) | *

( ) *
h

c h c h c
Wc W

c c
Wc

P W P W W ErrCount W W
WER
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=
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Here ( )cP W is the distribution of the correct text sentences 
from the test domain and, 

( )| ( | ) * ( | )h c h c
A

P W W P W A P A W=∑                             (3) 

So ( )|h cP W W is the expected distribution of the 
hypothesis hW which would be generated by ASR given all 
the possible acoustic realizations corresponding to the test 
sentence text cW . It should be noted that ( | )hP W A is not the 
posterior probability of the word sequence but instead is the 
probability that ASR will output hW as the 1-Best hypothesis. 
In other words,  

'

'( | ) ( ,arg max ( | ))
h

h h h
W

P W A W Score W Aδ=                    (4) 

We use Equation (2) as the basis for implementing the 
Text Decoder. Since, ( )cP W  is not known, we use the relative 

frequencies of the text data in the test corpus ( )cP W . ( )cP W  

will tend towards ( )cP W  as the size of the test set grows if 

the test text corpus is drawn according to ( )cP W . 

Robust estimation of ( )|h cP W W directly at word sequence 
level would be difficult given the sparseness of data for multi-
word sequences. Also, it would not generalize well in the 
cases where the test domain vocabulary is different from the 
vocabulary of the training set. It would, therefore, be better to 
decompose it further using sub-word units such as phonemes. 
Equation (5) gives a phoneme level decomposition using 
chain rule and reasonable approximations. 

( ) ( ) ( ) ( )
,

| | | |
h c

h c h h h c c cP W W P W P P W
ϕ ϕ

ϕ ϕ ϕ ϕ≈ ∑         (5) 

Here, cϕ and hϕ represent the phoneme sequences in the 
correct and hypothesis word sequences respectively. 
Approximation is due to the assumption that the correct 
phoneme sequence captures all the relevant information in the 
correct word sequence. In using, Equation (5), Text Decoder 
gets ( )|c cP Wϕ  from a dictionary or a pronunciation model. 

We refer to ( )|h cP ϕ ϕ  as the Confusion Model. Since,  

( )
'
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h

h h h
h h

h h h
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P W P WP W
P W P W
ϕ

ϕ
ϕ
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                              (6) 

a grammar or LM is required in addition to a dictionary to 
disambiguate between the word sequences which result in 
identical phoneme sequences such as “way to” and “weigh 
two”. Text Decoder uses these components as depicted in Fig. 
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Figure 3: Text decoder 

onfusion model alternatives 

e critical problem is how the acoustic confusion 
lexity can be modeled and obtained. One possible way is 
 acoustic encoding probability ( )|P x w  proposed by 
he expected log-likelihood of model x ’s acoustic 
ation when evaluated by model w can be theoretically 
ed. The desired probability can be derived from log-
ood. The advantage of this approach is that it works 

ly from the trained acoustic model and does not need 
 to the acoustic training data. A possible drawback is 

t makes the same assumptions that the acoustic model 
. Some of the independence assumptions made by the 
tic model may lead to a significant under-estimation of 
tual confusability of the models using real acoustic data. 
n alternative is to learn the confusion model from the 
g data. If training sentences and the corresponding 
hypotheses are taken as input string pairs, the edit 

tion distribution can be learned with a certain criterion 
earning algorithm. [3] proposed an EM-algorithm to 
stochastic model for string edit distance. String pair 
bility is defined from edit operation probability and 
rd-Backward algorithm is employed to maximize 
ood of training data. 

ontext dependent phoneme conversion rules with 
bilities were used in [4] for pronunciation modeling. We 
d to use a similar structure for the Confusion Model. 

 techniques in the field of pronunciation modeling may 
e useful for Confusion Model. [5] provides a good 

iew of the field. 
ai and Lee [6] use a framework similar to ours. They 

ss the different problem of minimizing WER for a given 
in by improving the pronunciation dictionary. They 
e to model the confusion entirely within the 
nciation dictionary and not at a general phoneme 
nce level as we do. Consequently, our confusion model 
re general. It is independent of the training vocabulary 
e domain. It also allows us to model confusions at the 
 sentence level rather than at the word level alone. 

3. Confusion model 

raining data for confusion model  

 obtain the phonemic string pairs needed for training 
onfusion model, we start with acoustic training data 
ribed at word level. We divide acoustic training data 
ultiple parts in order to use leave-one-out method.  
 turn, all but one (the left-out) part of the data is used to 
 state-tied tri-phone acoustic model from scratch using 

 Seq.:  Wc Text Decoder 

Confusion Model 

Language Model Dictionary 

P(Wh|Wc) 



HTK toolkit [7]. The left out part is then decoded by ASR 
using the acoustic model described above to get word 
hypotheses. Reference and hypothesis phoneme sequences are 
then obtained from reference (transcribed) and hypothesis 
word sequences using forced alignment of the acoustic data 
against the corresponding phoneme networks. These phoneme 
sequence pairs serve as the training data for the confusion 
model. 

Leave-one-out method is essential to avoid bias in the 
phoneme pairs. Otherwise, acoustic model used to obtain the 
hypotheses phoneme sequences will make substantially less 
mistakes on the acoustic data which it has already seen during 
training. If acoustic data transcriptions are used for LM 
training, then a similar leave-one-out procedure is also 
necessary for LM training. 

The phonemic string pairs are expected to be able to fully 
expose internal acoustic confusion. However, it is not clear 
how ASR LM should be configured. By intuition, a weaker 
LM would do a better job in terms of exposing the underlying 
acoustic confusability. The learned model will thus be 
influenced less by the training domain specific language 
patterns. The results in section 5 confirm this intuition. 

3.2. Phoneme conversion rules 

We characterize the mapping from reference phoneme 
sequence to hypothesis phoneme sequence by learning 
probabilistic rules similar to those described in [4]. Each rule 
provides the probability of conversion from zero or one 
phoneme in the reference to zero, one, or more than one 
phoneme in the hypothesis sequence within a certain context.  

Let Ω be the phoneme set including the silence phoneme 
sil which we also use to mark word boundaries. Let ε  denote 
an empty phoneme sequence. Then, each rule has the 
form: 'L F R F− + → , p, which means the focus 
phoneme { }F ε∈ ∪Ω  would be replaced by 'F ∗∈Ω  with 
probability p when it occurs in the context of phoneme 
sequence L to its left and phoneme sequence R to its right. We 
constrain the context phoneme sequences L and R to be of 
length 2 or less. In other words , L and R belong 
to{ } 2ε ∪Ω∪Ω . The probability p associated with each rule 

is '( | )P F L F R− + . The rules of this form can model 
insertion, deletion and substitution through the appropriate 
use of ε for F or F ′ . 

To learn the probability rules, we examine the alignment 
between the ASR decoded phoneme sequence and the 
reference phoneme sequence. For each phoneme in the 
reference sequence, we create a rule of the form indicated 
above, using the alignment and all possible contexts of length 
2 or less. We also create rules with ε as the focus for every 
position in the reference phoneme sequence to model 
insertions. The probability associated with each rule is simply 
the relative frequency: ' ' '( , ) ( )C L F R F C L F R− + − + . We 
use count-cutoffs to prune the rule set to ensure robustness 
and efficiency. 

4. Text decoding 
For a task domain, the Text Decoder will take test text as 

input, apply dictionary and LM for the test domain that would 
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r simplicity of implementation, we assume that there is 

que pronunciation cϕ for a given reference test text 
ce. Given cϕ , we insert sil word boundary marker 
en words. The Text Decoder then finds out all possible 
that could apply to every position within cϕ  by matching 
and sides (LHS) of all the rules against cϕ . If multiple 
match at a particular position, Text Decoder selects a 
 LHS with the largest context length. Linear 
olation is also possible, although we did not experiment 
it. Application of the selected rules to cϕ creates a 
rk which represents the set of paths representing all the 
le hypothesis phoneme sequences hϕ that would be 

ated using the Confusion Model i.e. ( )|h cP ϕ ϕ . Fig. 4 
 an example of a partial phoneme network. Notice that 
ord boundary) between ey and t can be deleted with 
bility 0.18, leading to the possible errors caused by the 
ement of the word way with wait or weight. 

 

re 4: Partial phoneme network for reference phrase 
“way to” 

 generate hypothesis words hW , the Text Decoder 
res the paths in the hϕ network by traversing the 
rk using standard depth-first-search strategy. To 
se the efficiency and to restrict the number of paths 
red, the Text Decoder prunes partial paths whose partial 
ood falls below certain threshold from the best 

lete path explored so far. Also, partial paths which do 
rrespond to a valid word sequence as indicated by the 

nary are also pruned. 
ue to the presence of word boundary sil, different paths 
 hypothesis phoneme network may correspond to the 
pronunciation. The Text Decoder uses Equations (5) 

6) simplified using the single pronunciation per word 
ption to estimate ( )|h cP W W . 

ct Word Sequence: 
is the cheapest way to fly from … 

Probability 

is the cheapest way to fly from … 0.80 

is the cheapest way to flight from … 0.12 

is the cheapest way to fly from … 0.04 

is the cheapest weight fly from … 0.02 

is the cheapest wait fly from … 0.02 

Table 1: Word sequences predicted by the Text 
Decoder with associated probabilities 

ble 1 shows a typical example of hypothesis 
ution. As pointed out in Section 2, this is not an N-Best 

ε: .2 

sil: .8 uw:.83 

ε: .17 

t: 1.0 

ε: .18 

sil: .82

ey: 1.0 w: 1.0 

1 2 3 5 6 4 



list with posterior probability but an estimate of ASR one-best 
hypothesis probabilities.  

5. Experimental results 
ATIS data was used for building confusion models. ASR 

system to be predicted used Viterbi decoder with state-tied tri-
phone acoustic model trained using all ATIS training data.  

We used 5-way leave-one-out training on acoustic model 
and LM to obtain phonemic transcription pairs described in 
section 3.1. We tried three types of LMs during the process of 
generating hypothesis phoneme sequences by decoding the 
left-out part of the training data. The LMs were: phone-
bigram LM, word unigram LM, and word trigram LM. These 
resulted in three sets of phoneme transcription pairs. We then 
built a confusion model from each set of phoneme 
transcription pairs. We will refer to these confusion models as 
phone-bigram, word unigram and word trigram confusion 
models respectively.  

5.1. WER estimation within training domain  

Since the acoustic model of ASR was built from all ATIS 
training data, naturally one would like to know how close the 
predictions on ATIS test task would be.  

We created 3 different test conditions within ATIS 
domain by using ASR with unigram, bigram, and trigram LM 
to decode the test data. We will refer to LM used in each test 
condition as a Test LM. For every test condition, the Text 
Decoder and ASR used the same test LM. For each test 
condition, we compare the WER predicted by each of the 3 
confusion models described above with the actual WER of 
ASR. The results are shown in Table 2 with the closest 
matching Text Decoder prediction for each test condition in 
boldface. 

It is clear that confusion model generated using phone-
bigram and word-unigram estimates ASR WER much better 
than the confusion model generated using word-trigram. This 
confirms the intuition that a weaker LM would be better at 
discovering acoustic confusion.  

Text Decoder with 
Confusion Model generated using Test LM ASR Phone-
Bigram 

Word-
Unigram 

Word-
Trigram 

Unigram 15.4 9.8 9.0 6.2 
Bigram 4.8 5.6 4.6 1.9 
Trigram 3.9 5.4 4.5 1.7 

Table 2: Comparison of WER estimate by Text 
Decoder with real ASR WER 

5.2. WER estimation for new domains 

We of course want the confusion model to be able to 
estimate WER for applications in new test domains. Our 
confusion models were trained from ATIS corpora. We 
applied the models to predict ASR WER in other test domains 
such as: Wall Street Journal dictation task (WSJ5K) and TI 
Digits. The results in Table 3 show that the predictions are 
reasonably close.  

What deserves mention here is the prediction on WSJ5K 
task which has a much larger vocabulary size and certainly 
contains more acoustic phenomena than the training corpus. 
Yet the estimation is pretty close.  
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TI_DIGITS  WSJ5K MALE FEMALE
cabulary size |V| 4986 11 11 

Test LM Bigram Uniform Uniform 
f test utterance. 318 4K 4K 

ASR 18.3 3.8 1.6 
Phone-Bigram 

Confusion Model 19.3 2.7 2.7 

Word-Unigram 
Confusion Model 15.1 1.3 1.2 

Table 3: Comparison of WER estimate by Text 
Decoder with real ASR WER in New Domains 

6. Conclusion and future work 
 order to estimate ASR WER in a task domain without 
tic data, we proposed a Text Decoder architecture which 
tes the distribution of ASR 1-best hypotheses using 

a text test corpus. We showed how a phoneme-level 
sion model based on context-dependent phoneme 
rsion rules can be used to capture acoustic model 
sion. We experimentally validated Text Decoder by 
ng reasonably close ASR WER prediction results both 
 training domain on which the confusion models were 
nd for new domains.  
ere are other potential areas of application of the 

sed Text Decoder such as: a development tool which 
llow the designer of ASR enabled application to identify 
of the application grammar which are likely to lead to 
WER; and discriminative LM training, where the LM 
l parameters can be estimated while taking into account 
tentially confusable competing word sequences that are 
ered by the Text Decoder without requiring acoustic 

or the LM training corpus. 
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