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Abstract

This paper presents a novel compensation approach, which is 

implemented in both model and feature spaces, for non-

stationary noise Due to the nature of non-stationary noise 

which can be decomposed into constant part and residual noise 

part, our proposed scheme is performed in two steps: before 

recognition, an extended Jacobian adaptation (JA) is applied 

to adapt the speech models for the constant part of noise; 

during recognition, the power spectra of noisy speech are 

compensated to eliminate the effect of residual noise part of 

noise. As verified by the experiments performed under 

different stationary and non-stationary noise environments, the 

proposed JA is superior to the basic JA and the joint approach 

is better than the compensation in single space. 

1. Introduction

The performance of automatic speech recognizer degrades 

drastically under the environments mismatched to the quiet 

training environment. For practical use it is required for 

recognition systems to work robustly in interfering noise. 

Most approaches to compensate for mismatch between 

training and deployment conditions due to additive noise 

assume that the noise is stationary. These approaches can be 

categorized into two types: model based or feature based. The 

former adapts the acoustic models to any kind of noise and 

the latter compensates features by noise reduction techniques. 

Under the non-stationary noise conditions, they can not be 

used indiscriminately. 

Recently many efforts are made to extend the methods to 

cope with non-stationary noise. For instance, in [1], time-

varying noise sources are modeled by Hidden Markov models 

or Gaussian mixture models that were trained by noise data 

before model compensation. Then parallel Viterbi decoding is 

needed to identify the optimum state sequences for both 

speech and noise. The use of mixture models for noise will 

result in a cost both in the evaluation of observation 

likelihoods and in the decoding. In [2], noise model 

parameters are assumed to be time varying and different 

parameter estimations are obtained for different frames. After 

the environmental parameters are estimated, they are used to 

estimate the clean features. In [3], the noise effects are 

decomposed into two parts in log-spectral domain: One 

represents stationary noise effects and the other represents 

effects from the residual time varying components of the 

noise. By the linearization of likelihood score, the residual 

noise can be compensated by computing the residual 

likelihood score during the recognition procedure. 
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erally speaking, model-based compensation performs 

 than feature-based compensation [4]. However, its 

utational load is usually heavier than that of feature-

 approach. Moreover, feature-based approach is more 

le than model-based approach for non-stationary noise.  

enjoy the merits of both methods, in this paper, we 

se to apply a two-step scheme to solve the problems 

 by the non-stationary noise. In the first step, model-

 approach is applied to adapt the model parameters 

 recognition to compensate the “global” mismatch 

ically. We adopted Jacobian adaptation (JA) [5] in this 

, and extended the algorithm to deal with the situation 

e mismatch between reference environment and target 

nment is large. To retain the low computational cost 

of the original method, noise is still modeled by one 

onent as in stationary noise environments. In the second 

to dynamically compensate the mismatch in the fine 

s of the temporal continuity, a feature space procedure, 

 as noise residue removal, is applied during recognition. 

ower spectra of noisy speech are modified so as to 

 the adapted models obtained in the first step. By this 

the compensation is implemented in both model and 

e spaces. 

 remainder of this paper is organized as follows: in 

to facilitate the balance of this paper, the experiment 

s are introduced firstly in Section 2. Section 3 

bes the motivations and framework of the proposed 

compensation method. Section 4 and Section 5 present 

xtended JA technique and the noise residue removal 

d followed by corresponding experiment results 

tively. Then the experiments and results of the 

sed joint approach are shown in section 5. Finally, the 

sions are summarized in Section 6. 

2. Experiment settings

roposed methods described in this paper had been 

ted in large vocabulary continuous speech recognition. 

riphone model set for recognition was trained using clean 

g sets from 85 speakers. A trigram language model was 

in all the tests with a 40,000 words vocabulary. The 

 topology was the same as described in [6].  

 feature vectors consist of 42 components including 13 

al coefficients and the pitch, their first order and second 

time derivatives. The zeroth MFCC was retained to 

 the inverse cosine transformation. 

investigate the performance of the proposed algorithms, 

inds of noise were employed in this work: stationary 

such as white and pink noise, non-stationary noise such 

tory, babble and F16 noise etc. Noise was added into 

lean testing utterances by varying the signal-to-noise 

SNR). The lengths of the testing utterances range from 5 



seconds to 10 seconds. The recognition accuracy for the clean 

test set with the speech models trained by clean speech is 

88.6%.

3. Motivations and framework 

At the tth frame, power spectrum of noisy speech is 

represented as follows: 

)()()( tNtXtY                             (1) 

where X(t) and N(t) denote the power spectra of clean speech 

and noise, respectively. Inspired by [3], we decompose the 

power spectrum of noise into constant part (mean spectrum) 

N0 and residual part )(tN :

                           )()( 0 tNNtN    (2) 

and in the log-spectral domain, the noisy speech is represented 

by 

          )))()(exp(1log()()( txtntxty   (3) 

where y(t), x(t) and n(t) represent the log-spectra of noisy 

speech, clean speech and noise respectively. 

Then (3) is rewritten by introducing (2) as follows: 
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where n0 is log-spectrum of constant part N0 of noise. Clearly, 

part one corresponds to the situation that the clean speech is 

corrupted by stationary noise N0, which can be compensated 

by model adaptation techniques such as JA [5] or PMC [7]. 

Part two includes the fine details )(tN  of the non-stationary 

noise that requires the dynamical compensation. Ideally, this 

part will equal to zero if the residual part of noise )(tN  is 

eliminated for each frame t.

Therefore, a two-step framework, consisting of extended JA, 

named virtual Jacobian adaptation, followed by noise residue 

removal, is proposed to deal with the effect of constant and 

residual part of noise explained in (4), respectively. These two 

steps are detailed in the following sections. 

4. Virtual Jacobian adaptation in model space 

4.1. Virtual Jacobian adaptation

Jacobian adaptation [5] is proposed as an analytic approach to 

adapt an initial acoustic model under reference condition to a 

target condition. The underlying idea is to express the change 

in the noisy speech model given that the reference condition 

changes towards the target condition. 

Let CS+Nr, CS+Nt, CNr and CNt denote cepstra of noisy speech 

under reference condition, noisy speech under target 

condition, reference noise and target noise, respectively. The 

relation between noisy speech cepstra is as follows:  

)(
rtrt NNrNSNS CCJCC                  (5) 

where *)( F
NS

N
diagFJ

r

r
r

denotes the Jacobian matrix 

for the reference noise, and F and 
*F denote the discrete 

cosine transformation and its inverse, respectively. 

However, if the difference between the reference and the 

target noise is not small enough to guarantee that the change 

in noisy speech model stays within the linear range of JA, the 

method does not works well. An extended JA named Virtual 

JA (VJA), which is an extension of [8], is proposed here to 
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the re
 this limit. Virtual JA assumes that a virtual intermediate 

condition Nm between Nr and Nt exists with which it is 

le that the non-linearity of the changes in noisy speech 

ls both from reference noise to intermediate noise and 

intermediate noise to target noise is alleviated. Then, the 

a of noisy speech under target condition may be 

ted as follows: 

)()(
mtrmrt NNmNNrNSNS CCJCCJC        (6) 
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m

m
m

.

ssumption of the virtual intermediate noise 

tion 

ptimal to make the noisy speech cepstra in (6) approach 

act noisy speech cepstra under target condition. Thus 

timal Nm verifies: 

)log()()( tNNmNNrNS NSFCCJCCJ
mtrmr

   (7)

viously it is not easy to obtain the optimal Nm. We can 

iment with some solutions. For example, it is assumed 

e Jm and CNm can be obtained alternately and iteratively 

 Nm is weight sum of Nt and Nr. In order to keep the low 

f JA and simplicity, we suppose that Nm satisfy: 

tm NN    (8) 

 coefficient is within 0 and 1. Then the mean of 

a of Nm is obtained by: 

tm NN
 ,

tm NN

2    (9) 

)1/log(5.0log 2

mmmmN NNNC
         (10) 

 recognition, means of speech distributions are adapted 

 proposed VJA and variances are still adapted by JA. 

ce the coefficient is determined, the computational 

of VJA for adapting means of speech distributions 

es than that of JA, but is still less than that of PMC. 

mplementation issues 

MMs of the reference noise environment was trained 

the training sets to which the white noise was added 

hat the resulting SNR was 40db. From these HMMs, the 

S+Nr were obtained for each mixture component of the 

s, which were computed by transforming cepstra from 

atic part of the Gaussian mean vectors into mel-power 

a. The noise vector Nr and CNr were estimated by 

ing the mel-power spectra and cepstra from the 

ning segments of 100 utterances in the training sets 

ted with white noise. The Jacobian matrix Jr was 

uted before recognition. 

 each testing utterance, the means of CNt and Nt were 

ed from the beginning of the utterance for the target 

 The means of Nm and CNm were estimated by equations 

0) for the virtual intermediate noise environment and 

er Jacobian matrix Jm was obtained. The means and 

ces of static cepstra in speech models were adapted in 

the following experiments. 

e must be taken to select to assure good performance 

A. In this paper, the coefficient in equation (8) was 

ined on experiment basis. Fig. 1 presents the 

nition results for the different target noise environments 

ifferent . For example, the lowest solid line represents 

cognition accuracy for testing set corrupted by white 



noise and target SNR 5db. The abscissa denotes the virtual 

SNR of the testing set corrupted by virtual intermediate noise 

generated by different . Fig.1 shows that the recognition 

accuracy was maximized when the coefficient is set to 

make the SNR of the intermediate noise condition 

approximatively 5-10db higher than the SNR of the target 

noise environments. 

Figure 1:  the relationship between recognition 

accuracy with different 

4.4. Experiments for stationary noise 

The task of this experiment is to compare the VJA with JA 

and PMC under stationary noise. We applied the testing set 

with white noise. In this table, results are shown for no 

adaptation for HMM (NA), adaptation with PMC, JA and the 

proposed VJA. All the adaptation was only applied on the 

static part of the cepstral means and variances. In VJA, the 

coefficient was selected to make the SNR of the 

intermediate noise condition 10db higher than the target SNR.

Table 1: recognition accuracy (%) 

SNR(db) NA JA VJA PMC 

20 68.28 77.86 78.98 78.96 

15 37.13 61.58 68.23 71.42 

10 18.88 36.34 48.10 58.37 

5 6.80 9.69 23.91 34.27 

It can be seen in Table 1 that along with the enlargement of 

the mismatch between target noise environment and reference 

noise environment the performance of JA deteriorated. 

However, VJA improved the performance of JA especially 

under lower SNR environment. The results showed the 

validity of virtual intermediate noise environment in VJA for 

stationary noise. PMC outperformed JA and VJA with higher 

computational cost. 

5.  Noise residual removal in feature space 

5.1. Noise residual removal 

The part two of (4) indicates the reason why the performance 

of model compensation degraded in non-stationary noise 

environments. In order to match the non-stationary noise, 

model compensation can be applied dynamically. However, 

the computational cost is heavy. On the other hand, 

processing in feature space is rather plastic for non-stationary 

noise with lower computational cost. According to (4), during 

recognition the removal of noise residual from power spectra 

of noisy speech results in matching better with the 
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 spectrum of noisy speech is modified as follows:

t

tttt

Y
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else

NNif t 0
ˆ   (11)

 
tŶ is the modified power spectrum of noisy speech and 

the estimated noise power spectrum. Theoretically 

ing, the additive relationship among the power spectra 

sy speech, clean speech and noise is not strictly held. In 

actice, is introduced to consider the error. 

 validity of this step combined with model adaptation 

ques for non-stationary noise is verified by the 

ing experiment. In Table 2 it is assumed that the noise 

 spectra are known in advance and SNR is about 8 db. 

Table 2: recognition accuracy (%) 

ise type F16 Babble 
White+

Babble
Factory

SS 39.93 40.41 37.61 37.78 

JA 45.11 44.26 40.41 39.68 

+Ideal 46.63 45.91 43.72 42.33 

Table 2, SS denotes spectral subtraction with known 

power spectra. JA+Ideal refers to adopt the noise 

al removal technique during recognition after JA. 

usly, JA+Ideal is superior to JA and SS. As we 

ted, the recognition results indicated that the joint 

ssing in both model and feature spaces does better for 

tationary noise.  

eralized from the above ideal situation, the accuracy of 

timated noise power spectra is the key factor for this 

n this paper, we use the sequential estimation algorithm 

 based on the Kullback-Leibler information measure [9] 

wer spectral domain to track the non-stationary noise 

nments. 

stimation of noise power spectra 

 work described in this paper, the noise spectrum is 

ed to be a deterministic and time-varying vector. The 

tion of noise spectrum is based on Maximum likelihood 

criterion as follows: 

)ˆ,,ˆ|(maxargˆ
1
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N
t NNYpN           (12) 

 1

1

tY represents the sequence of power spectra of noisy 

h {Y1,Y2,…,Yt+1}, tN1
ˆ is the sequence of estimated noise 

 spectra {
1N̂ ,

2N̂ ,…,
tN̂ } and 

X
 is the set of clean 

h models. We assume that the power spectral space of 

speech is represented by N Gaussian mixture models, 

X, and each model has M components with mixture 

cients, means and diagonal covariance matrices { x

mnw ,
,

x

mn,
,1 n N, 1 m M}.

 objective function above is optimized indirectly using 

M algorithm. The ML auxiliary function can be 

ssed out as 

},,ˆ|)ˆ|,,({log)ˆ|ˆ( 1

11
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11,
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ttL YNNCSYpENN (13)

1

1

tS ={s1,s2,…st+1} be the sequence of state indices, 

{c1,c2,…ct+1} be the sequence of indices of mixture 

onents in the clean speech models. 
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In (14),  is the forgetting factor, which is to reduce the effect 

of past data to the new input data, and 
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To carry out the M-step, we can use second-order Taylor 

series expansion and the Newton-Raphson technique [9] to 

sequentially estimate the noise power spectra via the following 

recursive form

1

1
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tttt SFNN                    (15) 

where the fisher information item Ft+1 and score item St+1 are

as follows 
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The estimation process described here was adopted for each 

testing utterance during recognition. 

Concretely speaking, the output energies of Mel-scaled 

filterbank were used to replace the power spectra due to its 

lower dimension and the still kept linear relationship among 

mel-power spectra of noisy speech, noise and original speech. 

The details of the estimation process can refer to [10]. 

6. Experiments and results

The objective of the experiments in this section is to 

investigate the performance of the proposed joint algorithm 

under non-stationary noise environments. 

The recognition results for testing sets with additive babble 

noise and F16 noise are shown in Table 3 and 4. In these 

tables, JA+Nrr denotes combining JA and noise residual 

removal; JA+Ideal denotes the same process as in JA+Nrr, 

except that the noise power spectra were assumed to be known 

in advance. VJA+Nrr represents the combination of VJA and 

noise residual removal. The coefficient defined in (11) was 

set as 0.8. The forgetting factor  in (16) was set at 0.8 and 0.9 

under babble and F16 noise environment respectively.  

It can be concluded from table 3, 4 that the VJA 

outperformed JA, as had been shown in table 1, especially 

under low SNR. Moreover, comparison between JA+Nrr and 

JA+Ideal shows the efficacy of the estimation process of noise 

power described in 5.2. Compared with JA and VJA, the 

corresponding joint compensation approaches such as JA+Nrr, 

VJA+Nrr can obtain better performance. The results of 

JA+Nrr and VJA+Nrr illustrated that the processing in feature 

space can improve the recognition performance obtained by 

model-based compensation for non-stationary noise and 

VJA+Nrr achieved the best results, which verify the validity 

of the proposed joint compensation approach for non-

stationary noise environments. 

7. Conclusions

In this paper, two new techniques are proposed to improve the 

recognition performance under noise environments, especially 

non-stationary noise. Virtual Jacobian adaptation outperforms 

the Jacobian adaptation if the mismatch between reference 

noise environment and target noise environment is large. 

Noise residual removal technique makes the speech signal 

contaminated by non-stationary noise match the adapted 
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In the E-step, the auxiliary function is simplified as  
s better than before. The joint compensation by Virtual 

ian adaptation and noise residual removal demonstrates 

e advantages of joint compensation both in model space 

ature space for non-stationary noise environments.  

able 3: recognition accuracy with babble noise (%) 

NA JA VJA 
JA+

Nrr

JA+

Ideal

VJA+

Nrr

83.13 83.56 83.81 83.66 84.54 84.22

70.14 73.44 76.02 74.02 75.26 76.66

42.28 46.16 55.29 48.52 48.74 56.59

17.17 21.56 27.28 22.70 22.89 28.58

Table 4: recognition accuracy with F16 noise (%) 

NA JA VJA 
JA+

Nrr

JA+

Ideal

VJA+

Nrr

81.90 83.40 82.92 83.49 83.62 83.38

68.48 72.68 73.29 73.10 73.57 76.12

42.38 51.09 53.00 52.20 52.30 54.78

12.94 18.21 24.13 19.93 20.60 25.46
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