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Abstract
Automatic Speech Recognition (ASR) systems typically use
smoothed spectral features as acoustic observations. In recent
studies, it has been shown that complementing these standard
features with pitch frequency could improve the system perfor-
mance of the system [1, 2]. While previously proposed systems
have been studied in the framework of HMM/GMMs, in this
paper we study and compare different ways to include pitch
frequency in state-of-the-art hybrid HMM/ANN system. We
have evaluated the proposed system on two different ASR tasks,
namely, isolated word recognition and connected word recogni-
tion. Our results show that pitch frequency can indeed be used
in ASR systems to improve the recognition performance.

1. Introduction
Speech is produced by a linear time-variant vocal tract system
excited by the vibration of vocal cords. The acoustic speech sig-
nal mainly contains two kinds of information, namely, source
information and vocal tract system information. Traditional
ASR systems use features derived from the smoothed spec-
tral envelope of the speech signal which basically represent the
characteristics of the vocal tract system (alleviating the knowl-
edge of voice source characteristics), e.g. perceptual linear pre-
diction (PLP) features[3].

Voice source characteristic such as pitch is a perceptual
quantity; but its acoustic correlate (rate of vibration of vo-
cal cords) referred to as pitch frequency, can be estimated
from the speech signal. Pitch frequency can convey differ-
ent information, information about the speaker; its existence
or non-existence can convey information about the type of
sound (voiced or unvoiced); its variation across time can con-
vey prosodic information. Hence, pitch frequency is not an
ideal source of information for ASR. It has been observed in
literature that pitch frequency affects the estimation of the spec-
tral envelope, in particular, the estimation of the spectral peaks,
making the standard acoustic features sensitive to changes in
pitch frequency, e.g. [3]. Thus, we may expect certain correla-
tion between standard acoustic feature and pitch frequency, for
example [1] illustrates a negative correlation between 7th Mel
cepstral coefficient and logarithm of the pitch frequency of a
phoneme sample. In recent studies, it has been shown that the
standard acoustic features can be supplemented with additional
information such as pitch frequency to improve the performance
of ASR system [1, 2].

In standard automatic speech recognition systems, at each
time frame �, hidden Markov models (HMMs) estimate the
likelihood (also called emission probability) of the acoustic ob-
servation �� being emitted on a specific state �� [4]
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�� � ��� � � � � �� � � � � ��, set of possible HMM states.
is typically estimated using Gaussian Mixture Models

s) or Artificial Neural Network (ANN). In incorporating
frequency (���) at time frame �, we can model (1) in the
ing ways:

Augmenting the standard features with pitch frequency
��� and estimating the emission distribution using the
augmented features.

����� ������� (2)

Conditioning the emission distribution upon ���.

�������� ���� (3)

A particular example of such a system is gender mod-
elling. In gender modelling [5], two different acoustic
models are trained corresponding to each gender using
their respective training data. During recognition, there
are different options such as one can run a gender recog-
nizer and pick the acoustic models accordingly or pick
the one which gives the best match (��� operation) for
decision making or hide the gender information (inte-
grating over all possible values).

implementing (2) seems easy, the implementation of a
based upon (3) is not straightforward, if ��� is contin-

valued. Approaches to realize systems using (3) when the
ion distribution is modelled by GMMs were recently pro-
in [1, 2].
this paper, we study different ways in which the pitch fre-

y information can be introduced in a hybrid HMM/ANN
ASR. Hybrid HMM/ANN systems naturally address both

me-dependence and the within feature vector dependence
ption. There are known advantages in using an ANN to

l emission distribution such as better discrimination, mod-
higher-order correlation between the components of the

e vector, access to posterior probabilities etc [4]. In hy-
MM/ANN systems, the emission probability is estimated

the state posterior distribution (which is discrete) obtained
the output of the ANN, whereas, in HMM/GMM systems
ission probability is estimated from the mixture of Gaus-

istributions (which is continuous). Hence, there is no di-
xtension to the approach suggested in [1, 2]. Also, in [2] it
een shown that observing the pitch frequency during train-
d hiding it during recognition may help in improving the

rmance of the system. As we will see in the next section,
not always possible in case of hybrid HMM/ANN system.
Section 2, we present the different approaches to model

frequency in hybrid HMM/ANN based ASR. Section 3
escribes our system and the experimental studies, before

uding with an analysis of the results obtained.



2. Modelling Pitch Frequency in Hybrid
HMM/ANN ASR

Standard HMM based ASR models ����	� [4], the evolution
of the observed space 	 � ���� � � � � ��� � � � � ��� and the
hidden state space � � ���� � � � � ��� � � � � ��� for time � �
�� � � � � 
 as:
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In case of hybrid HMM/ANN based ASR �������� is replaced
by the scaled likelihood ����������, which is estimated as [4]:
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For incorporating pitch frequency information �� �
����� � � � � ���� � � � � ����, we have to model ����	� ���.
The pitch frequency can be discrete valued i.e. ��� �
��� � � � � �� � � � � 
� or continuous valued. The simplest and
most common practice is to augment the feature vector �� with
��� and model the evolution of the augmented feature vector
over the hidden state space � similar to (4), resulting in:
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The implementation of such a system is straightforward, irre-
spective of whether the pitch frequency is discrete or continu-
ous valued. As it can be observed from (6), this approach also
implicitly models the dependency between the state �� and the
pitch frequency ���, which may be noisy. For example, pitch
frequency cannot tell anything about the state �� or what has
been spoken. In such a case, it would be better to relax the joint
distribution in (6) by assuming independence between ��� and
��, yielding
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(7)

If the pitch frequency is discrete valued then, a system based
upon (7) could be realized by training an ANN corresponding
to each discrete value. This is similar to the case of gender mod-
elling, where acoustic models for male and female speaker are
simply trained separately. In case of continuous valued ���, it
is not evident how to implement a hybrid HMM/ANN system
according to (7). For the case of emission distribution modelled
by Gaussian such a system is realized using conditional Gaus-
sian [6, 1, 2], where the first order moment of the distribution is
a linear regression upon the pitch frequency.

It has been shown in literature that pitch frequency estima-
tion is error prone [7]. In such a case, it may be good to observe
��� during training and hide it i.e. integrate over all possible
values during recognition [2]. The pitch frequency then can be
hidden in two ways depending upon how the pitch frequency is
treated. The pitch frequency can be a static information (aver-
age pitch frequency over the entire utterance, e.g., gender mod-
elling). In such a case, the discrete valued pitch frequency can
be hidden in the following way:
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s and summing their output. If the pitch frequency is a
ic variable, it could be hidden by marginalizing the dis-

ion ����� ������� over ��� to obtain the emission dis-
ion �������� and performing decoding according to (4)
gain in hybrid HMM/ANN system it is not clear how to

nalize continuous valued pitch frequency. However, for
se of discrete valued pitch frequency, it could be hidden

imate �������� in the following way:

�������� �

��

���

����� ��� � ����� (9)

�
��

���

�������� ��� � �� � � ���� � �� (10)

erforming decoding according to (4). Equation (10) cor-
nds to (7), when the pitch frequency is hidden. In an ear-
udy, we investigated the effectiveness of pitch frequency
tic information. We did not observe any improvement in
rformance of the system [8]. Hence, in this paper we re-
ourselves to the case where pitch frequency is treated as
ic information.

3. Experiments
Systems

udy 3 different hybrid HMM/ANN systems.
ine: System using standard acoustic features based on

m 1: System with �� and ��� based on (6); ��� is
uous valued.

m 2: System with ��� independent of �� based on (7);
s discrete valued.

Database and Features

bove systems are studied for two different tasks of ASR:
ed word recognition and connected word recognition.
se the PhoneBook speech corpus for speaker-independent
ndependent, small vocabulary (75 words) isolated word
nition [9]. For the connected word recognition task, we
e OGI Numbers speech corpus which contains free-format
ers spontaneously spoken by different speakers [10]. The
tions of the training, validation, and evaluation sets are
r to [11] and [12], for the PhoneBook corpus and the OGI
ers corpus, respectively.
here are 42 context-independent phones including silence,
modelled by a single emitting state in the systems trained
oneBook corpus. The acoustic vector �� is the MFCCs
ted from the speech signal using a window of 25 ms with

t of 8.3 ms. Cepstral mean subtraction and energy normal-
n are performed. Ten Mel frequency cepstral coefficients
Cs), the first-order derivatives (delta) of the ten MFCCs
e �� (energy coefficient) are extracted for each time frame,
ing in a 21 dimensional acoustic vector.

the systems trained on OGI Numbers, there are 27
xt-independent phones including silence, each modelled
single emitting state. The acoustic observation �� con-
of 12th order perceptual linear prediction (PLP) coeffi-

plus the energy cepstral features, their deltas and their
deltas extracted from a 25 ms speech signal with a frame
f 12.5 ms.



The pitch frequency is extracted using simple inverse filter
tracking (SIFT) algorithm [13]. A 5-point median smoothing
is performed on the pitch frequency contour. We evaluated our
pitch estimation algorithm on the Keele Pitch Database 1 [14].
The results of this evaluation are given in Table 1. It shows that
the pitch frequency estimation is reliable. In future, we would
like to improve it further using other pitch frequency estima-
tion approaches. In case of the systems where pitch frequency
is continuous valued, the pitch frequencies are normalized by
the highest pitch frequency which is 400Hz in our case (same
for all utterances). The normalization is done in order to avoid
saturation of the sigmoids [15].

Table 1: Evaluation of pitch estimation algorithm for 5 male
and 5 female utterances. Gross error = ��

��
where �� is the total

number of comparisons for which the difference between esti-
mated pitch frequency and reference pitch frequency is higher
or lower than 20% of reference pitch frequency and �� is the to-
tal number of comparisons for which estimated pitch frequency
and reference pitch frequency represent voiced speech. AMD -
Absolute mean deviation.

Voiced Unvoiced High Low
Gender in in gross gross AMD

error error error error
(%) (%) (%) (%) (Hz)

Female 6.5 2.9 1.1 16.0 3.7
Male 22.3 1.5 3.7 5.1 2.0

3.3. Experimental Studies

The PhoneBook systems were trained with the 21 dimensional
MFCC features. The OGI Numbers systems were trained with
the 39 dimensional PLP features. The baseline systems were
trained with the standard acoustic features. The number of pa-
rameters of system trained on PhoneBook database and OGI
database are 139K and 538K, respectively. We have trained dif-
ferent baseline systems by varying the size of the ANN, all of
them yielding performance similar to the one quoted in this pa-
per.

In case of System 1, we trained a multilayer perceptron
(MLP) by concatenating the standard acoustic feature vector
with the pitch frequency at every frame i.e. the input layer con-
tains additional inputs corresponding to the pitch frequency. In
this case, we would be taking advantage of the MLPs ability
to estimate higher order correlation between the components of
the input feature, e.g. [4, page 75]. The number of parameters
of system trained on PhoneBook database and OGI Numbers
database are 144K and 465K, respectively.

The System 2 was implemented in the following manner.

1. The pitch frequency contour is estimated for all the train-
ing utterances.

2. The pitch frequencies are then vector quantized into
three discrete regions, where one of the discrete regions
models the unvoiced speech.

3. An MLP corresponding to each of the discrete regions is
trained by finding the nearest discrete region correspond-
ing to the value of the pitch frequency at that frame. The

1ftp://ftp.cs.keele.ac.uk/pub/pitch/Speech
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e 1: Isolated word recognition on PhoneBook database.
performance is expressed in-terms of word error rate
). ET-ER: Systems trained with estimated ��� and tested
stimated ���, ET-RR: Systems trained with estimated ���

ested with random ���. RT-ER: Systems trained with ran-
��� and tested with estimated ��� (results presently not
ble for System 1).

only exception is that the silence regions are observed by
all the three MLPs. This is done because silence regions
are nonspeech regions.

uring recognition, we study two strategies, namely, hav-
e pitch frequency observed (O) and having the pitch fre-
y hidden (H). When the pitch frequency is observed dur-
cognition, the single MLP corresponding to each observed
s used. This is done on a frame-by-frame basis. When the
frequency is hidden, all the MLPs are used the accord-
(10). The number of parameters (sum of the parameters
the 3 neural networks) of system trained on PhoneBook

ase and OGI Numbers database are 144K and 465K, re-
ively.
he results of the studies conducted on the PhoneBook
ase and OGI Numbers database are shown in Figure 1 and
e 2, respectively (labelled ET-ER in Figures 1 and 2). In
he studies, System 1 and System 2 perform better than the
ine. In the case of PhoneBook system, the significant im-
ment (99% confidence) is observed for System 1, where as
e of OGI Numbers signification improvement (98% con-
e) is observed for both System 1 and System 2.
order to verify that the improvement in the performance

stem 1 is due to pitch frequency and not due to increase in
put dimensionality or knowledge of voicing, we trained
m 1 by concatenating the voicing decision with �� i.e.
ituting the pitch frequency value by � wherever pitch ex-

The performances obtained were similar to the baseline.
uggests that improvement was not just due to the increase
input dimension or voicing knowledge. We conducted

dditional studies to investigate the role of pitch frequency
g training and recognition. In the first study (labelled RT-

the Figures 1 and 2), we trained System 1 and System 2
random pitch frequency values (within the range of the
frequency estimator) and conducted recognition with es-
ed pitch frequency values. In another study (labelled ET-

Figures 1 and 2), we conducted recognition experiments
the System 1 and System 2 were trained with estimated

frequency values and during recognition the estimated
frequency values were substituted by random pitch fre-
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Figure 2: Connected word recognition on OGI Numbers
database. The performance is expressed in-terms of word er-
ror rate (WER). ET-ER: Systems trained with estimated ���
and tested with estimated ���, ET-RR: Systems trained with
estimated ��� and tested with random ���. RT-ER: Systems
trained with random ��� and tested with estimated ���.

quency values (within the range of the pitch frequency estima-
tor). The results of this study are shown in Figures 1 and 2 for
the PhoneBook Database and OGI Numbers Database, respec-
tively. It can be observed from the results that the performance
of the systems does not improve over the baseline system. This
suggests that during training, the system has learned the rela-
tionship between the acoustic feature, the true estimate of the
pitch frequency and the HMM states and this relationship is the
one which is contributing towards the improved performance of
the systems (labelled ET-ER in Figures 1 and 2) when the true
estimate of the pitch frequency is observed.

4. Summary and Conclusion
In this paper, we studied two different ways in which
pitch frequency can be incorporated in state-of-the-art hybrid
HMM/ANN systems. Both approaches studied here performed
better than the baseline system. System 1 yielded significant
improvement for both the isolated word recognition task and
connected word recognition task; whereas System 2 performed
significantly better than the baseline for the connected word
recognition task only. Our results suggest that pitch frequency
can indeed help in improving the performance of ASR. The re-
sults obtained complements the recent efforts to model pitch
frequency within the framework of HMM/GMM and dynamic
Bayesian networks [1, 2].

In case of System 2, the difference between the perfor-
mance of observed case and hidden case when random pitch
frequencies were substituted for the estimated pitch frequencies
(ET-RR case in Figures 1 and 2) shows the advantage of hiding
the pitch frequency during recognition, when reliable estimate
of pitch frequency is not available.

In the future, we would like to extend this study to incor-
porate other additional information such as rate-of-speech and
short-time energy in the context of modelling speaker variabil-
ity in spontaneous speech.
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