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Abstract

A novel automatic method is introduced for classifying speech
segments into broad phonetic categories using one or more hid-
den Markov models (HMMs) on long speech utterances. The
general method is based on prior analysis of the acoustic fea-
tures of speech and the properties of HMMs. Three example
algorithms are implemented and applied to voiced-unvoiced-
silence classification. The main advantages of the approach
are that it does not require a separate training phase or training
data, is adaptive, and that the classification results are automati-
cally smoothed because of the Markov assumption of successive
phonetic events. The method is especially applicable to speech
recognition.

1. Introduction
The problem of automatically segmenting and classifying ar-
bitrary speech input into a small number of basic acoustic-
phonetic classes has been studied for a long time. The
classes usually correspond to the type, or absence, of vo-
cal tract excitation and can be specified e.g. in one of
the following ways: speech-silence (voice activity detection);
voiced-unvoiced; voiced-unvoiced-silence; voiced-unvoiced-
mixed; voiced-unvoiced-mixed-silence. Applications for these
classification problems arise in many areas of speech process-
ing. They include limiting the search space in speech recogni-
tion [1], selecting a proper type of excitation in speech coding
and synthesis, and speech analysis applications such as auto-
matic phoneme boundary detection.

In this paper, a method is presented that can be applied
to these classification problems. We focus especially on what
is perhaps the most commonly adopted approach, namely the
three-way voiced-unvoiced-silence (V-U-S) classification prob-
lem. However, by a proper selection of features the proposed
general method is applicable to any of the mentioned tasks. The
method is based on hidden Markov models (HMMs) and their
iterative estimation. It requires no separate training phase, is
not speaker dependent, is adaptive in the sense that the present
conditions are “learnt” directly from the test speech input, and
uses simple predefined rules in combination with some funda-
mental properties of HMM processing. Feature selection and
determination of the classification rule in each feature space is
crucial to the performance. In part, this task can be based on
earlier published results [2].

A HMM is used to model a speech utterance, whose length
is typically a few seconds. In basic form the method is non-
causal. The HMM parameters are estimated and the inferred
states are associated with phonetic categories (voiced, unvoiced,
and silence, in this case). Thus, sequences of phonetic events
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effect modeled as a first-order Markov chain. This ap-
h seems to exploit certain temporal aspects of speech ef-
ely. The idea of using a single HMM to model utterance-

portions of continuous speech and identifying the states
phonemes or longer segments is not new in itself. Poritz
ed a low-order linear predictive HMM operating on suc-
e blocks of speech samples and presented qualitative re-
suggesting that the model was capable of discriminating
en phonetic categories. Levinson [4] used a large pre-
d HMM, whose states corresponded to phonetic units, for
h recognition.
he adaptive V-U-S scheme of Bruno et al. [5] also em-
d a Markovian assumption for the classes, but was oth-
e based on a statistical decision approach. Other early
h classification methods are also based on statistical deci-
2] [6], while some more recently published solutions use
l networks [7][8]. All these methods use a pattern recog-
approach and rely on sufficient amount of training. More

al acoustic-phonetic properties of the sound classes are
lly used only in the feature selection phase. In contrast,
oposed method is primarily based on prior knowledge of
elations between speech feature vectors in different pho-
categories. This is combined with the basic properties of
s and the Baum-Welch reestimation procedure. Three ex-
s of algorithms using this approach are presented and their
fication performance is evaluated experimentally.

2. The general method
ain idea is to base the classification on prior knowledge

e relative acoustic properties of the speech sound cate-
s in a given feature space. These relations should be as
al as possible and not context-dependent. For example,
ced speech will normally have a larger proportion of high
ency energy than voiced speech, while both types will nor-
have larger energy than silence (or background noise) in

nt recording environment. These rules are applied in a
time or local context. A similar philosophy has been ap-
e.g. in [9] where the decision thresholds of a rule-based
recogniser are determined from the test input itself. The
d proposed here does not use thresholds, however. The

fication rules are incorporated in HMM signal processing
us used only implicitly. Incorporation of the rules takes
primarily in the model parameter initialisation phase.
he steps common to all variations of the method are as
s:

(Design of the classifier) Decide the sound categories to
be separated. Denote the number of categories by �.

Find a feature space where discrimination according to



step 1 is possible. Each individual category should be
adequately separable from the rest by a binary decision
using some subset of the features and a linear decision
boundary. A simple approach is to try to find features
along which the desired categories lie nearest to the end-
points of the range of values. This can be done by com-
paring measured distributions of the individual features.
Denote the length of the feature vectors by � .

3. Define a �-state continuous density ergodic HMM
[10] specified by the following set of parameters:
a �-dimensional vector � of initial state probabili-
ties; a �� � �� state transition probability matrix
� ; � -dimensional state-specific mean vectors ��,
� � �� � � � � �; a �� ��� covariance matrix � com-
mon to all states.

4. (Classification) Initialise the HMM state mean vectors
��, � � �� � � � � �, with the considerations of step 2
in mind. In particular, if the category corresponding to
HMM state � is minimal (maximal) among the categories
with respect to some feature, then the corresponding ele-
ment in the vector�� should be initialised with the min-
imum (maximum) value of this feature. However, it may
not be practical to use absolute minima and maxima of
the possible feature values. Instead, state mean initialisa-
tion is done in the classification phase when test speech
input is available. The mean vector elements are then ini-
tialised with local statistics (minimum, maximum, mean)
computed from the input. Next, initialise the Markov
chain parameters � and � with uniform probabilities.
Initialise the covariance matrix� with either the covari-
ance matrix of the test data or one determined previously.
The example algorithms use the former technique.

5. Estimate the HMM parameters for the speech input using
Baum-Welch reestimation [10]. A slight modification
of the conventional algorithm has been used, in which
the computation of the so called forward and backward
(joint) probabilities is replaced by alternative formulas
that rely more on conditional probabilities [11]. In all
tested cases, the reestimation converged rapidly to the
final parameter values after just a few iterations.

6. Obtain the inferred HMM state sequence based on the
estimated parameter values. This can be done by running
the Viterbi algorithm [10].

7. Convert the HMM state segmentation into a segmenta-
tion in terms of the sound categories. This is straight-
forward if the states are assumed to have a one-to-one
correspondence with the categories, as is the case here.

The motivation for using a HMM in this manner comes
from various heuristic observations. As an illustration, the
three-dimensional scatter plots in Fig. 1 show the relationships
of three acoustic features - log energy, linear prediction (LPC)
error, and zero-crossing rate - over two sentences spoken by
different speakers. Three distinct clouds can be distinguished in
both cases, albeit in somewhat different locations. Each cloud
can be primarily associated with a particular type of excitation.
Furthermore, each cloud lies closest to one or more bounding
planes of the three-dimensional feature space (each feature has
a theoretical or practical upper and lower bound). It would be
nice to be able to automatically segment the signal in terms of
discrete states corresponding to these concentrations.

From step 3, the HMM parameters to be estimated are �,� ,
�, and ��� � � � ��� . The parameter reestimation is an itera-
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e 1: Scatter plots of three features over two utterances.
etic category according to manual labeling is denoted by
for voiced frames, circles for unvoiced frames, and plus
for silent frames.

lgorithm, in which each iteration produces new estimates.
own by Baum et al. [12], each iteration increases the like-
d of the observations, conditional on the parameter esti-
, until a local maximum on the likelihood surface is found.
ion and experience tell us that if the input sequence is long
h, the uniform initialisation of � has negligible effect on

nal converged estimates regardless of the properties of the
. The same has been found to hold also for � [10]. Ev-
y, in most cases, these parameters can even be initialised
random values subject to the constraints of a first-order
ov process. Convergence due to the covariance matrix �
ot been found to be a problem here either if it is initialised
s suggested in step 4. Thus, the focus is on the conver-
of the state mean vectors ��� � � � ��� . They should

rge on points close to their initial values, corresponding
ocal likelihood maximum. Whether this maximum is a
d one depends on the speech input. Each sound category
d be represented in the input; otherwise the state mean
lisation in step 4 forces a distinction where there should be
and the association of the states with sound categories may
e what is assumed. If each category is represented and the
e space is adequate for discriminating between the cate-

s, then the conditional likelihood of the input should be
sed primarily by moving the state means from near the
ary regions towards the closest actual concentrations (see
). Elements of the state mean vectors are initialised with
a and maxima precisely to make the means approach the

concentrations from approximately correct directions and
ise the risk of confusing them with each other. Of course,

honetic content of the input is usually not known in ad-
and it is not certain that the input contains segments from

category. Since the sound categories discussed here are
ommon, this has not been found to be a problem in most
provided the speech input is long enough.



3. Feature selection
Classification is based on a set of features that are easily com-
puted and capable of V-U-S discrimination. The features repre-
sent some acoustic aspects of the speech signal. They are com-
puted from speech signal frames so that each feature value only
carries information from one frame. The following four features
are used in the algorithms of this paper, computed from 25 ms
frames with a frame shift interval of 3 ms:

1) Log energy of the Hamming windowed signal frame, ��

2) Normalised linear prediction error energy using the au-
tocorrelation method (with prediction order 24), ��

3) Zero-crossing rate, ��

4) Autocorrelation coefficient at unit sample delay, ��

The features were selected in part by examination of their
phoneme-specific distributions and also because the same or
similar features have been widely used in speech classification
[2] [5]-[8]. However, this particular selection is not the only
possibility and statistical analysis of different features may re-
veal better solutions.

4. The algorithms
The V-U-S classification algorithms were allowed to use only
the acoustic features ��, ��, ��, and ��. Each algorithm was
allowed at most four reestimation iterations over the test speech
input. Both the feature set and the iterations could be distributed
between multiple HMMs as in algorithms 2 and 3.

4.1. Algorithm 1 (direct method)

This algorithm uses a single HMM with � � �, � � �. The
states are initialised using statistics from the test input with
�� � ����������	
������	
������������� for voiced,
�� � ����������	
��������������	
����� for unvoiced,
and �� � ��	
����������������������	
����� for
silence. After four reestimation iterations the most likely
state sequence is found by the Viterbi algorithm and readily
converted to a segmentation in terms of the phonetic categories.

4.2. Algorithm 2 (parallel method)

The algorithm uses two HMMs, both with � � �,
� � �. The first model, denoted by A, uses fea-
tures �� and �� and two reestimation iterations. Its
states are initialised with ���� � ����������	
����� and
���� � ��	
�������������. The second model, denoted by
B, uses the remaining two features and two reestimation itera-
tions. States are initialised with���� � ����������	
�����
and���� � ��	
�������������. The results are finally com-
bined using the following rule: a segment is unvoiced if model
A is in state 1 and model B is in state 1; voiced if model A is
in state 1 and model B is in state 2; silent if model A is in state
2. Thus, model A is used for speech-silence classification and
model B is used for voiced-unvoiced classification.

4.3. Algorithm 3 (hierarchical method)

This algorithm is very similar to algorithm 2 as it uses similar
HMMs with the same features and initialisation. The only dif-
ference is that model B is not used on the complete speech input
but instead on a concatenated version where the silence regions,
found by model A, have been cut out.
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5. Performance evaluation
st material was two sets of 80 phonetically diverse Finnish

nces, each set read aloud by a different male speaker. The
ial was recorded with high-quality equipment in an ane-
room at a sampling rate of 22 kHz. Each utterance was

ally segmented into phoneme-size units and labeled by a
d phonetician. The phonemic transcription was refined by
guishing voiced and unvoiced /h/ and by separating the oc-
n and burst segments of stop consonants. This transcrip-
as converted to a V-U-S labeling, for use as performance

ation reference, as follows. The voiced reference category
ed all vowels and voiced consonants. The unvoiced ref-

e category included the fricative /s/ and the bursts of un-
d stops. It was observed that the algorithms, using the
es given, often misclassified low energy frication. Conse-
ly, /f/ and unvoiced /h/ were assigned to the silence refer-
category together with the pauses. It should also be noted
eing based on a phonemic representation of speech, the
nce only approximately corresponds to an actual V-U-S
entation. To verify the results, an independent manual true

segmentation was made for the material of one speaker.
ach of the 160 utterances was processed separately by al-
ms 1, 2, and 3. Tables 1-3 show the combined category-

fic frame classification results for both speakers. Only
frames were considered that, according to the reference,

ined speech from just one category. The unvoiced cate-
was the most difficult to identify correctly. This is mostly
o the mentioned inadequacy of the feature representation
rrectly identifying low energy frication. Table 4 shows the
ll percentage scores for each algorithm and speaker in dif-
t cases. Algorithm 2 gave the best classification accuracy.
se the scores with transition frames included were con-
bly lower than with only steady-state frames considered,
gment boundaries were obviously not always classified
ordance with a manual labeling made by a human. Fig.
ws the segmentation of one utterance using algorithm 1.
be seen that the stop bursts can be variably classified to

ent categories and that the algorithm may find short ad-
al segments near the category boundaries. These effects

still bear some phonetic relevance. The last two rows of
4 show overall scores using as reference the manual V-

abeling available for speaker 1. The scores are lower than
the phoneme-based reference. This happens mainly be-
the manual V-U-S labeling has a larger amount of low

y frication categorised as unvoiced speech.
he success of the classification also depended somewhat
e sentence. E.g. using algorithms 2 and 3, with speaker

the manual reference, utterance-specific classification
s varied in the ranges 76 % - 100 % and 72 % - 96 %
eady-state frames and all frames, respectively. Inspection
erances with score below 90 % showed that they were usu-
ssociated with a virtual absence of the unvoiced category
r a combination of very short and very long segments be-
ng to some category.

1: Steady-state frame classification results, algorithm 1.

Classified as
V U S Correct

ccording V 98690 389 2354 97.30 %
to U 847 9091 907 83.83 %

labeling S 2786 967 24978 86.94 %



Table 2: Steady-state frame classification results, algorithm 2.

Classified as
V U S Correct

According V 97763 315 3355 96.38 %
to U 487 9269 1089 85.47 %

labeling S 1081 671 26979 93.90 %

Table 3: Steady-state frame classification results, algorithm 3.

Classified as
V U S Correct

According V 97552 526 3355 96.17 %
to U 484 9272 1089 85.50 %

labeling S 935 817 26979 93.90 %

6. Conclusions
A simple method capable of discriminating between predeter-
mined phonetic categories was described and its performance
was demonstrated with example implementations. Algorithm 2,
where the set of four acoustic features is split between two in-
dependent binary classifications, provided the best results. Al-
gorithm 3, using a two-stage hierarchical approach in which
the voiced-unvoiced classification is made only for the concate-
nated non-silent segments from the first stage, also performed
better than the direct three-way decision of algorithm 1, but ap-
parently the Markov modeling was slightly less effective than
in algorithm 2.

The main motivation for the development of the method is
its potential use in phonemic speech recognition as a prelimi-
nary classifier that limits the search space by eliminating un-
likely phoneme sequences. The main benefits of the method are
that it does not require prior training and adapts well to the char-
acteristics of the speaker and the recording environment. The
performance depends very much on the selection of features
chosen to represent the speech input. Feature selection affects
the general structure, model definitions, and the interpretation
of the classification results. Proper model initialisation is also
very important as it implements the predetermined classification
rules. Here, the tested features and classification rules provided
good discrimination between voiced speech, silence, and high
energy fricatives, but failed to discriminate between low energy
frication and silence. The principle is applicable to other pho-
netic classification tasks if suitable feature representations are
found and the models are defined and initialised appropriately.
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