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Abstract 

 We show how to construct a channel-independent 
representation of speech that has propagated through a noisy 
reverberant channel.  The method achieved greater channel-
independence than cepstral mean normalization (CMN), and it 
was comparable to the combination of CMN and spectral 
subtraction (SS), despite the fact that no measurements of 
channel noise or reverberations were required (unlike SS). 
 

1. Introduction 
 
1.1. The problem.  Although automatic speech recognition 
(ASR) technology has made steady progress in recent years, 
existing systems with large vocabularies are sensitive to the 
nature of the acoustic environment.  Extensive retraining is 
often required if the acoustic channel is altered because the 
noise level changes, the speaker’s room or position changes, 
or the signal conduit changes (e.g., telephone vs room speech).  
This report presents a novel method of blindly removing such 
channel-dependence. 
 
1.2. Conventional methods of achieving channel-
independence [1].  In most commonly-encountered situations, 
the acoustic environment can be characterized by a 
convolutive impulse response function and additive noise.  In 
the absence of noise, a sufficiently short impulse response 
function has the effect of a translation in cepstral space, and 
CMN can be used to “subtract it out”.  Reverberations can also 
be combated by correcting for the impulse response after it has 
been measured by playing white noise, sine waves, or a chirp 
through the channel. 
 If the noise is stationary and is not correlated with 
the signal, it adds a nearly constant term to the filterbank 
outputs.  In that case, it can be removed by SS after it has been 
measured.  However, such a measurement requires accurate 
discrimination between speech and no speech, which may 
require the help of the recognizer in the system's "back end". 
 The system’s “back end” can also be modified to 
incorporate the expected effects of a channel, although this 
can be computationally expensive.  For example, a clean 
speech model can be adapted to the channel of interest by 
maximum likelihood linear regression (MLLR) or by parallel 
combination of clean speech and noise models.   
 
1.3. The proposed method of channel normalization.  
Unlike existing ASR systems, humans perceive the 
information content of ordinary speech to be remarkably 
invariant in the presence of channel-dependent signal 
transformations.  Yet there is no evidence that the speaker and 
listener exchange calibration data or that they measure the 
channel's impulse response and noise.  Evidently, the speech 
signal is redundant in the sense that listeners blindly extract 
the same content from multiple acoustic signals that are 
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ormed versions of one another.  In earlier reports [2-5], 
thor showed how to design sensory devices that have 
bility to recognize the underlying similarity of time-
dent signals differing by unknown transformations 
r or non-linear).  In such devices, the signal is rescaled 
on-linear function, with the form of this scale function 

 determined by previously encountered signal levels.  
escaled form of a signal time series is an invariant 
rty of it in the following sense: it is unaffected if the 
eries is transformed by any time-independent invertible 
o one) function.  In other words, the original time series 
he transformed versions of it have the same rescaled 
  This is because a transformation’s effect on the signal 
at any time is compensated by its effect on the scale 
on.  In earlier publications, this method was illustrated 
pplying it to analytic examples, simulated signals, 
tic waveforms of human speech, time-dependent spectra 
d songs, and time-dependent spectra of synthetic speech-
unds [2-3].  This report shows how the technique can be 

to represent speech cepstra in a channel-independent 
er (Fig. 1).  This procedure does not require the explicit 
rement of the characteristics of either channel (e.g., 
se response function or noise level).  One only needs to 
1) samples of a speaker's utterances from the two 

els (possibly different utterances from each channel); 2) 
 brief reference signals from each channel, which 
ent the same input sounds and are used to define the 
 and orientation of each channel's scale function. 

2. Theoretical framework 
we argue that a time-independent invertible 

ormation must relate the pair of cepstral time series 

x1

x1

s2

s1

a b

c

a’ b’

x1

x2

x1

x2 s2

s2

s1

s1

x1x1

x1x1

s2

s1

s2

s1

a b

c

a’ b’

x1

x2

x1

x2

x1

x2 s2

s2

s1

s1

 
re 1: Schematic outline of the new method.  a) The cepstral 
ctory of an utterance from channel #1.  b) The scale function 
ed from a speech sample from channel #1.  a’) The cepstral 

ctory of the channel #2 version of the utterance in a.  b’) The 
 function derived from a channel #2 speech sample.  c) The 
ctory found by using b to rescale a, which is also equal to the 
ctory found by using b’ to rescale a’.  The dotted arrow shows 
 the channel #1 cepstra (a) can be converted into the channel 
epstra (a’) by mapping the rescaled values of a through the 
rse of the channel #2 scale function (b’). 



produced by the same utterance propagating through two time-
independent channels.  We make use of the embedding 
theorem that is well known in the field of non-linear dynamics 
[6].  This theorem states that almost every mapping from a d-
dimensional space into a space of more than 2d dimensions is 
invertible.  Essentially, this is because so much "room" is 
provided by the "extra" dimensions of the higher dimensional 
space that the d-dimensional subspace, which is the range of 
the mapping, is very unlikely to self-intersect.  Now, consider 
a speech signal that forms the input of any channel with 
stationary impulse response and noise.    Because speech has 
3-5 degrees of freedom [7], the power spectra of this input 
signal lie in a 3-5-dimensional subspace within the space of all 
possible power spectra.  For the linear channels described in 
Section 1.2, the cepstral coefficients of the channel's output 
signal are time-independent functions of the input power 
spectra, and they lie in a 3-5-dimensional subspace within the 
space of all possible cepstra.  The embedding theorem implies 
that there is an invertible mapping between input power 
spectra and the channel's output cepstra, as long as we are 
using a sufficient number (more than 6-10) of cepstral 
coefficients.  Therefore, if the same input signal propagates 
through two different channels, the pair of output cepstral time 
series will be related by an invertible mapping, because each 
of them is invertibly related to the same time series of input 
power spectra.  As is well known [1], this transformation 
between cepstra is quite non-linear if noise is present and/or if 
the channel's transfer function varies significantly across 
individual filterbank elements. 
  Let )(tx  ( Nkxk ...,,2,1, = ) be the time-dependent 
function that describes the trajectory of N cepstral coefficients 
of speech from a channel.  In the following, we show how a 
special coordinate system (or scale) )(xs  is determined by a 
differential geometry that the speech trajectory imposes on the 
x manifold.  Speech is invariantly represented in this 
coordinate system in the following sense: if its cepstral 
trajectory is subjected to any invertible transformation, the 
representation of the transformed trajectory in its s coordinate 
system is the same as the representation of the untransformed 
speech in its s coordinate system.  To see how this comes 
about, consider a point y in a region of the x manifold that is 
densely sampled by the speech trajectory.  Define klg  to be 
the average outer product of the time derivatives of the speech 
trajectory as it passes through a small neighborhood of y: 

ytx

lkkl
dt

dx
dt

dx
g

~)(
= , where the bracket denotes the 

average over time.  As long as this neighborhood contains N 
linearly independent time derivatives, klg  is positive definite, 
and its inverse klg  is well defined and positive definite.  

Under any change of coordinate systems )('' xxxx =→ , 
dt
dx  

transforms as a contravariant vector.  Therefore, klg  and klg  
transform as a contravariant and covariant tensors, 
respectively.  This means that klg  can be taken to define a 
metric on the x manifold, and a coordinate-independent 
process for moving (parallel transporting) vectors across the 
manifold can be derived from this metric by means of the 
methods of Riemannian geometry.  Now suppose that N 
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ly-independent "reference" vectors )...,,2,1( Naha =  can 
fined at a special "reference" point 0x  on the manifold.  
xample, in the experiments in Section 3, each reference 
 was taken to be the average cepstral velocity during 
f a few brief manually-chosen time intervals when the 
h trajectory passed through the same neighborhood in 
al space.  The reference vectors can be parallel 
orted across the manifold to define the s coordinates of 
oint x.  For example, the point x can be assigned the 
inates s ( Nksk ...,,2,1, = ) if it is reached by starting at 
nd then: parallel transporting 1h  along itself 1s  times 
 simultaneously parallel transporting the other ah  along 
me path, then parallel transporting 2h  along itself 2s  
while simultaneously parallel transporting the other ah  

 the same path, …, and finally parallel transporting Nh  
 itself Ns  times.  Notice that this parallel transport 
ss is independent of what coordinate system is used on 
pstral (x) manifold.  Therefore, as long as the reference 
vectors can be identified in a coordinate-independent 
er, the s representation of the speech trajectory will also 
coordinate-independent.  Because an invertible 
ormation of the trajectory is mathematically equivalent 
hange of the manifold's coordinate system, this means 
peech trajectories related by invertible transformations 
have the same s representation.  Recall that the 
ding theorem implies that there is an invertible mapping 

en the speech trajectories of an utterance propagating 
h two different channels.  It follows that these 

tories have identical s-representations.  This 
entation can be used directly as channel-independent 
of a recognizer.  Alternatively, as shown in Fig. 1, this 
dure can be used to perform channel conversion: i.e., to 
y the cepstral time series of speech from one channel (a 
ted channel) so that it resembles the cepstral time series 
 same utterance from another (clean) channel, on which 
stem was trained. 

In the above discussion, it was assumed that the two 
functions were derived from identical utterances that had 
gated through the two channels.  However, suppose it is 
ed that different utterances from the same 
er/channel combination always lead to the same metric 
cale function.  Then, the above channel conversion 
dure can be performed even if different speech samples 
been observed in the two channels.  In other words, one 
se the scale functions derived from different clean and 
ted utterances to predict the cepstral coefficients of the 
versions of corrupted utterances.  The success of the 

iments in Section 3 suggests that speech scale functions 
this property of utterance-independence; i.e., they are 
 with respect to speech content.  This is not surprising 
e following reason.  We know that speech is composed 
small number of units (e.g., phonemes) that occur 
edly with certain frequencies.  Therefore, two 
iently large samples of speech are likely to produce the 
distribution of cepstral velocities in each cepstral 

borhood.  Because the metric reflects the statistical 
ution (i.e., the covariance matrix) of those velocities, the 

peech samples will also lead to the same metric and the 
scale function. 



 
3. Experimental results 

 
We performed experiments on data from three male and 
female speakers of American English, who were part of the 
DARPA Air Travel Information System (ATIS0) corpus of 
speaker-dependent training data [8] and who represented 
different accent regions.  The ATIS0 speech samples were 
recorded with a Sennheiser microphone at a 16 kHz sampling 
rate with 16 bits of depth.  For each speaker, the clean speech 
sample was comprised of the unmodified data representing 12 
sentences (approximately 80 s) of this corpus.  Non-
overlapping sets of sentences were used to define the clean 
speech samples of different speakers.  The acoustic waveform 
of each sentence was Fourier transformed, after it had been 
Hamming-windowed in 24 ms time frames at 4 ms intervals.  
Each frame's power spectrum was used to compute 20 mel 
frequency cepstral coefficients (MFCC).  For each speaker, 
the set of 12 sentences defined a time series of approximately 
2 x 104 cepstra, which formed a trajectory in cepstral space.  
This trajectory densely traversed and retraversed a compact 
"speech domain", whose location, size, and shape depended on 
the speaker and channel characteristics.  The speech trajectory 
was dimensionally reduced by retaining its first two principal 
components, which contained approximately 95% of the data's 
variance (Fig. 2). 

The trajectory was covered with a uniform 64 x 64 
array of rectangular neighborhoods within which the clean 
speech metric was computed by the formula in Section 2.  
Then, parallel transport was defined in terms of an affine 
connection, which was given by the standard combination of 
metric derivatives in the Christoffel bracket.  For each 
speaker, we manually identified a tight cluster of cepstra that 
represented brief sounds in the clean speech sample (each 
sound being 4 ms long).  These were used to determine a 
reference point and reference vectors ( 0x  and ah ) that 
defined the origin and local orientation of the clean speech 
scale.  Then, the complete scale (Fig. 2) was formed by 
parallel transporting these reference vectors away from the 
origin, as described in Section 2. 

For each speaker, a corrupted speech sample was 
created from 12 different sentences by convolving each signal 
with a channel impulse response function and adding Gaussian 
white noise in the time domain.  Note that no sentence of the 
ATIS0 corpus was used twice for the same speaker or for 
different speakers.  Each speaker's speech was corrupted by 
one of two impulse response functions, which were 
synthesized by the "image source" method [9].  These 
functions described small rooms with different levels of 
reverberation (reflectivity ~ 0.7-0.9) in which the speaker and 
microphone were separated by varying distances (25-112 cm).  
Each impulse response included all reverberations with echo 
times less than 64 ms.  After addition of noise, the SNR of the 
corrupted speech was 16-20 db in each case.  As above, the 
acoustic waveform of the corrupted speech was used to 
compute an MFCC time series, which formed a trajectory in 
cepstral space (Fig 2).  This data was dimensionally reduced 
by retaining its first two principal components (containing 
approximately 89% of the data’s variance), and the metric and 
affine connection of corrupted speech were computed. 
Corrupted versions of the clean speech reference sounds were 
used to determine the corrupted reference information ( 0'x  
and ah' ), and the corrupted speech scale was then defined by 
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el transporting these reference vectors away from the 
.  It is important to note that these brief reference sounds 
the only information that was common to the derivations 
e clean and corrupted speech scales, which were 
ise based on entirely different sets of utterances.  

e that the scale function for corrupted speech (Fig. 2) is 
ined in the lower half of the speech domain because of 
lative paucity of data there. 

Next, the scales of clean and corrupted speech were 
to perform the channel conversion process described in 
n 2 (Fig. 1).  Figure 3 shows a typical result.  Notice 
e channel-converted MFCCs and the clean MFCCs were 

 closer to one another than were the corrupted and clean 
s after normalization by CMN.  Figure 3 also shows the 
utions of Euclidean distances between the corrupted and 
MFCCs (after CMN) and between the channel-converted 
lean MFCCs, at 1430 time points during all words in 

 2: Left: The trajectories of the first two principal 
nents of the cepstra of 12 clean (top) and corrupted (bottom) 
ces from speaker BF.  These figures have been rotated and 
d along each axis to show detail.  Right: The scale functions 

d from the left panels.  The thin black (thick gray) lines are 

1 ) isoclines. 



three typical sentences.  These histograms show that the 
channel conversion process did a much better job than CMN 
in moving the corrupted MFCCs close to the clean MFCCs at 
the great majority of time points.  Furthermore, the new 
channel conversion procedure was comparable to the 
combination of CMN + SS in its ability to normalize speech 
from different channels.  This is true despite the fact that the 
channel conversion procedure did not involve the 
measurement of noise levels required by SS.  Very similar 
results were obtained for the other speakers.   
 A technical comment should be made at this point.  
Recall that the scales of clean and corrupted speech were 
derived from dimensionally-reduced data.  Therefore, in Fig. 
3, we compared the ability of the channel conversion process 
to the ability of conventional methods (CMN alone or CMN + 
SS) to predict the dimensionally-reduced clean MFCCs from 
dimensionally-reduced corrupted MFCCs.  However, we also 
found that the Euclidean distances between fully-dimensional 
clean MFCCs and corrupted MFCCs were reduced more by 
the above channel conversion procedure than by CMN. 
 

4. Discussion 
 
Previous publications [2-5] described a novel method of 
representing signal time series that essentially “filters out” the 
effects of unknown distortions.  In this report, the method was 
used to create channel-independent representations of speech 
cepstra.  The experimental results suggest that the new 
technique is more successful than CMN and comparable to 
CMN + SS in its ability to decrease the signal’s channel 
dependence.  Even better results can be expected if more of 
the data’s variance is retained in the dimensional reduction 
step and if longer speech samples are used to compute the 
metric and scale.  Notice that the new method has the 
following advantages compared to conventional approaches to 
channel normalization: 1) it does not require prospective 
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rements of the channel's impulse response and noise; 2) 
a pure "front end" technology and avoids the 

utational demands of modifying or retraining the 
's recognizer.  In principle, an ASR system with the 

ront end can be trained in one environment and then 
n another without additional measurements or retraining. 
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Figure 3: Upper: The solid black (blue) and dashed (red) lines show the MFCCs of the clean and corrupted versions of the words “and make”, 
respectively, after “normalization” by CMN.  Solid gray (green) lines show the corrupted MFCCs after the new channel conversion procedure.  
Lower: The distribution of Euclidean distances between the corrupted and clean cepstra after CMN (left), after CMN + SS (center), and after the 
new channel conversion process (right).  The means (99% confidence intervals) of these distributions are: 35.4+0.9, 22.9+0.6, and 23.4+1.0. 
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