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Abstract
This paper describes a novel approach to flexible control of
speaker characteristics using tensor representation of speaker
space. In voice conversion studies, realization of conversion
from/to an arbitrary speaker’s voice is one of the important ob-
jectives. For this purpose, eigenvoice conversion (EVC) based
on an eigenvoice Gaussian mixture model (EV-GMM) was pro-
posed. In the EVC, similarly to speaker recognition approaches,
a speaker space is constructed based on GMM supervectors
which are high-dimensional vectors derived by concatenating
the mean vectors of each of the speaker GMMs. In the speaker
space, each speaker is represented by a small number of weight
parameters of eigen-supervectors. In this paper, we revisit con-
struction of the speaker space by introducing the tensor analysis
of training data set. In our approach, each speaker is represented
as a matrix of which the row and the column respectively cor-
respond to the Gaussian component and the dimension of the
mean vector, and the speaker space is derived by the tensor anal-
ysis of the set of the matrices. Our approach can solve an inher-
ent problem of supervector representation, and it improves the
performance of voice conversion. Experimental results of one-
to-many voice conversion demonstrate the effectiveness of the
proposed approach.

Index Terms: voice conversion, Gaussian mixture model,
eigenvoice, tensor analysis, Tucker decomposition

1. Introduction
Voice conversion (VC) is a technique to transform an input ut-
terance of a speaker to another utterance that sounds like an-
other speaker with its linguistic content preserved [1]. VC can
be regarded as a framework of modification between two fea-
ture spaces, not limited to speaker spaces. Hence VC tech-
niques can apply to various applications, including the modifi-
cation of speaker identity in Text-to-Speech (TTS) systems [2],
speech enhancement [3], hand motion to speech conversion [4],
and so on. Statistical approaches have often been used for im-
plementing the conversion from source features to target ones
[1, 2, 5, 6]. Among these, GMM-based approaches are widely
used in particular because of their flexibility.

To construct the conversion model, however, these methods
require a training corpus, which contains plenty of utterances
with the same linguistic content from both the source and tar-
get speakers. In addition, application of the conversion model
is limited to this specific pair of speakers. Namely, flexible con-
trol of speaker characteristics for VC framework is an impor-
tant objective. For this purpose, it is effective to utilize voices
of other speakers as prior knowledge. There have been sev-
eral proposed approaches which do not require a large paral-
lel corpus but use other non-parallel data. Mouchtaris et al.

proposed an unsupervised training method based on maximum
likelihood constrained adaptation of the GMM trained with an
existing parallel data set of a different speaker pair [7]. Lee et
al. proposed another approach based on maximum a posteri-
ori (MAP) adaptation [8]. They are inspired by speaker adap-
tation techniques in speech recognition studies. To use prior
knowledge from many other speakers more effectively, Toda et
al. proposed eigenvoice conversion (EVC) based on the eigen-
voice technique in speech recognition [10]. In the EVC, eigen-
voice GMM (EV-GMM) is trained with multiple parallel data
sets consisting of utterance pairs of a single speaker, which is
called the reference speaker henceforth, and many pre-stored
speakers. Based on joint density models of the reference and
the pre-stored speakers, the speaker GMMs of the pre-stored
speakers can be extracted, and a speaker space is constructed
based on GMM supervectors which are high-dimensional vec-
tors derived by concatenating all the mean vectors of each of the
speaker GMMs. Similarly to speaker recognition studies [11],
an arbitrary speaker is represented as a vector of this speaker
space. Hence the joint density GMM of the reference and the
target speaker is flexibly developed by estimating a small num-
ber of weight parameters for the bases of the space.

However, the representation of GMM supervector has an
inherent problem that multiple factors of acoustic variations are
included in the same space. Namely, Gaussian component of
GMM and the dimension of the mean vector are treated interde-
pendently, and the speaker space becomes a high-dimensional
vector space. In this paper, to represent the speaker space for
the VC framework as more tractable, we propose one-to-many
voice conversion based on tensor representation of the speaker
space. In our approach, an arbitrary speaker is not represented
as a supervector, but a matrix whose row and column respec-
tively correspond to the component of GMM and the dimension
of the mean vector. Using this representation, we express the
data set of the pre-stored speakers as a third-order tensor, and
introduce the tensor analysis to obtain the speaker space. Since
the tensor analysis can treat multiple factors of variations prop-
erly [12], it will be expected to improve the performance of
VC. Although we tackle the task of one-to-many VC in this pa-
per, our proposed method can also apply to many-to-one VC,
or tasks of speaker recognition. Because our approach mainly
focuses on the representation of the speaker space, there still
exists the flexibility to integrate our method with other effec-
tive methods such as speaker adaptive training for EVC [13] or
non-parallel training for many-to-many EVC [14].

The remainder of this paper is organized as follows.
Section 2 describes the basic EVC approach. Then, our pro-
posed approach using the tensor representation of the speaker
space is described in Section 3. In Section 4, experimental eval-
uations are described. Finally, Section 5 concludes the paper.
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2. Eigenvoice conversion (EVC)
2.1. Eigenvoice GMM (EV-GMM)

In this section, one-to-many EVC [15] is described. Let

X t = [x�t ,Δx�t ]� and Y
(s)
t = [y

(s)�
t ,Δy

(s)�
t ]� be 2D-

dimensional vectors of the source speaker and the s-th target
speaker, respectively. They consist of D-dimensional static and
dynamic features. The notation (·)� denotes transposition of a
vector. The joint probability density of the source and the target
vectors is modeled by an EV-GMM as follows:
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whereN (x; μ,Σ) denotes the normal distribution with a mean
vector μ and a covariance matrix Σ. The weight of the m-
th component is denoted by αm, and the number of mixture
components is M . In EV-GMM, when we use the S pre-
stored speakers, the target mean vector μ(Y )

m is represented

as a linear combination of the bias vector b
(0)
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, where

K < S. In EV-GMM, the speaker individuality of the tar-
get is controlled with the K-dimensional vector w(s). Namely,
a speaker space is constructed by K bases of supervectors
B = [B�
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2.2. Construction of the speaker space for EVC

When we employ EV-GMM based on principal component
analysis (PCA), to construct the speaker space for EVC, first,
a target independent joint density GMM (TI-GMM) is trained
using all of the multiple parallel data sets simultaneously. Next,
each target dependent GMM is trained by updating only the tar-
get mean vectors of TI-GMM using each of the corresponding
parallel data set. As a feature vector of the speaker space, a
supervector for each pre-stored target speaker is constructed by
concatenating the mean vectors of the target dependent GMM.
The bias vector b and representative vectors B are determined
with PCA for all the supervectors of the target speakers.

2.3. Adaptation of EV-GMM

The EV-GMM is adapted for arbitrary speakers by estimating
the weight vector w for given their speech samples based on
maximum likelihood criterion [9]. Let Y (tar) be a sequence of
the target features. w is estimated as follows:

ŵ = argmax
w

Z
P (X , Y (tar)|λ(EV ), w)dX . (3)

Using EM-algorithm for the estimation, we can derive the fol-
lowing updating equations for ŵ:
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t , λ(EV ), w). (6)

mode-1 flattening

mode-3 flattening
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Figure 1: Flattening of the (I1 × I2 × I3)-tensor A to the flat-
tened matrices A(1), A(2) and A(3).

Equation 4 approximately means the calculation of the projec-
tion weights of the target for each basis of the speaker space.
TI-GMM is used for the initialization for Equation 6. After
adaptation, the step of parameter generation is the same as [16].

3. Tensor representation of speaker space
3.1. Multilinear algebra

In this section, construction of the speaker space based on
the tensor analysis is described. First, we introduce some of
the multilinear algebra related to our approach [17]. Tensor
is a multidimensional array which generalizes matrix repre-
sentation. Each dimension in tensor is called “mode.” Let
A ∈ RI1×I2×I3 be a third-order tensor. Generally, a high-order
tensor can be expressed as a matrix using a mode-n flattening,
which slices a tensor A along the mode-n axis and splices the
sliced matrices to one matrix A(n) as shown in Figure 1. Using
this flattening operation, the product of a tensor and a matrix can
be defined. The expression A = G ×n B denotes the mode-n
product of a tensor G with a matrix B, and it is performed by
using the model-n flattened matrices as A(n) = B ·G(n).

One of the most important operations of matrix algebra is
Singular Value Decomposition (SVD). Since a matrix can be
viewed as a second-order tensor, SVD of matrix A can be rep-
resented as the following mode-n products:

A = USV � = S ×1 U ×2 V . (7)

Expanding SVD in the case of second-order tensors to that of
high-order ones, we can derive the following decomposition:

A = S ×1 U 1 ×2 U 2 ×3 U 3. (8)

When U 1, U 2, and U 3 are orthogonal and the tensor S is
dense, i.e. not diagonal as the case of second-order, the de-
composition of Equation 8 is called high-order SVD, or Tucker
decomposition [17, 18]. Since PCA can be regarded as SVD of
a data matrix, the construction of the space can also be expanded
by Tucker decomposition when we introduce a data tensor.

3.2. Proposed construction of the speaker space

To construct the speaker space based on Tucker decomposi-
tion, each speaker in the pre-stored data sets is expressed as an
M ×D′ matrix [19], where M is the number of mixtures, and

D′ = 2D. First, the bias matrix b′ =
h
b
(0)
1 , b

(0)
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(0)
m
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is
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subtracted from each speaker matrix in advance. When we have
the S pre-stored speakers, the training data sets are represented

as the tensorM∈ RM×D′×S . Then,M can be represented as
follows:

M = GM×D′×S ×1 U (M) ×2 U (D′) ×3 U (S), (9)

where U (M)∈RM×M , U (D′)∈RD′×D′ , and U (S)∈RS×S .
These matrices separately capture the effects from GMM com-
ponents, dimensions of the mean vector, and speaker indices,
respectively, and the tensor G puts them together. Fixing the
index of the third mode, we obtain the matrix representing the
speaker n as

μ(n) = G ×1 U (M) ×2 U (D′) ×3 U (S)(n, :). (10)

Although there are several candidates for bases of the speaker
space, in this paper, as similar to [19], Equation 10 is grouped
as follows:

μ(n) =U (M)
n
G ×2 U (D′) ×3 U (S)(n, :)

o�
=U (M)W �

n ,

(11)

where U (M) becomes the bases, and W n∈RD′×M is a weight
matrix. Using the truncated bases, consequently, we obtain the
matrix for a new speaker as

μ(new) =U (M)W �
(new) + b′, (12)

where U (M) ∈ RM×K(K ≤ S) and W (new) ∈ RD′×K are
a representative matrix and a weight one, respectively. Hence,
in our proposed method, parameters to be estimated become a
D′ ×K matrix, while they become a K-dimensional vector in
the conventional EVC.

In [19], the equation for adaptation is derived based on min-
imum mean square error. On the other hand, in this paper, for
adaptation data Y (tar), we derive the following updating equa-
tions based on maximum likelihood criterion:
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Um = U (M)(m, :) ∈ R1×K , (15)

where vec() is the vec-operator that stacks the columns of a
matrix into a vector. Compared with Equation 4, Equation 13
has a similar form, but it estimates D′ × K parameters rather
than K parameters in Equation 4. This means that our proposed
method might be more flexible to adapt for the data. We verify
it by the experiments.

4. Experimental evaluation
4.1. Experimental conditions

To evaluate the performance of our proposed method, one-to-
many voice conversion experiments were carried out. We used
one male speaker as the reference speaker from ATR Japanese
speech database B-set [20], and 273 pre-stored speakers includ-
ing 137 male and 136 female speakers [21]. 50 sentences were
uttered from each speaker. In the evaluation, we selected new 6
speakers of 3 male and 3 female speakers. We used 1 to 16 ut-
terances for adaptation, and other 21 utterances for evaluation.
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Figure 2: Results of objective evaluations by mel-cepstral dis-
tortion (MCD). The numbers in parentheses mean the optimal
number of K in each condition in the sense of the MCD.

We used 24-dimensional mel-cepstrum vectors for spec-
trum representation (D=24). These are derived by STRAIGHT
analysis [22]. The number of mixture components (M ) was
fixed to 128. Aperiodic components, which are features to con-
struct STRAIGHT mixed excitation, are not converted in this
study, and they are fixed to −30 dB at all frequencies. Prosodic
features, the power coefficient and the fundamental frequency
were converted in a simple manner that only considers the mean
and the standard deviation of the parameters.

We compared the proposed one-to-many VC algorithms
(Proposed) and the one-to-many EVC (EVC) with traditional
VC with the parallel training (Traditional) [16]. We note that
speaker adaptive training is not applied in both the proposed
and the EVC method.

4.2. Objective evaluations

We evaluated the conversion performance using mel-cepstral
distortion between the converted vectors and the vectors of the
targets. Figure 2 shows the result of average mel-cepstral for the
test data as a function of the number of adaptation, or training
sentences. In “Traditional,” for each case, the optimal number
of mixture components is selected. Both the proposed method
and the EVC significantly outperform “Traditional” when us-
ing a small amount of adaptation data less than 8. This means
that prior knowledge from the pre-stored data set is effectively
utilized for improvement of the performance. Compared with
“EVC”, the performance of the proposed method is better. This
means that our proposed representation of the speaker space
works well rather than supervector representation of the speaker
space. In this experiment, the size of representative matrix in the
proposed method (K) was optimally determined in each num-
ber of adaptation sentences in the sense of the mel-cepstral dis-
tortion. When the number of adaptation sentences was small,
K is also small. K = 272 was optimal in EVC, i.e. all of
the representative vectors are used. On the other hand, in our
proposed method, the size of the representative matrix was ef-
fectively reduced, since the full size of the representative matrix
is K =127 when M =128. It might be said that our proposed
approach effectively captures the essence of the speaker space.

4.3. Subjective evaluations

A listening test was carried out to evaluate the naturalness of
converted speech and conversion accuracy for speaker individ-

655



 0

 20

 40

 60

 80

 100

2

P
re

fe
re

nc
e 

sc
or

e 
[%

]

16
 0

 20

 40

 60

 80

 100

2
P

re
fe

re
nc

e 
sc

or
e 

[%
]

16

Naturalness Individuality

Traditional
EVC

Proposed
95% confidence interval

Figure 3: Results of subjective evaluations. The number in x
axis is the number of adaptation (or training) sentences.

uality. The test was conducted with 8 subjects. To evaluate the
naturalness, a paired comparison was carried out. In this test,
pairs of two different types of the converted samples were pre-
sented to subjects, and then each subject judged which sample
sounded better. To evaluate conversion accuracy, an RAB test
was performed, where pairs of two different types of the sam-
ples were presented after presenting the reference sample of the
target speech. The number of sample pairs evaluated by each
subject was 36 in each test.

Figure 3 shows the results. When using two adaptation
data, both the “Proposed” and “EVC” outperform “Traditional.”
When using 16 adaptation data, “Traditional” has the best per-
formance in both naturalness and speaker individuality. Com-
pared with the EVC method, the performance of the proposed
method is comparable or slightly better to that of the EVC ex-
cept in speaker individuality when using 16 adaptation data.

Both the objective and subjective evaluations suggest that
our proposed method works effectively. For further improve-
ments, we need to investigate the properties of our pro-
posed method in detail, e.g. other candidates for grouping in
Equation 10.

5. Conclusions
We have proposed a new method for speaker adaptation in voice
conversion which represents the pre-stored data set as the ten-
sor representation. In our approach, each speaker is represented
as a matrix whose row and vector respectively correspond to
the Gaussian component and the dimension of the mean vector.
The treatment of the data set as the tensor representation enables
the conversion framework to model the speaker characteristics
more flexibly. For further improvements of the conversion per-
formance, first, integration of our method with other effective
methods such as speaker adaptive training or non-parallel train-
ing should be verified. We are also planning to investigate other
grouping methods in Equation 10. The optimization of the size
of the representative matrix, i.e. the optimization of K, is an-
other further work.
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