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Abstract
This paper investigates a noise robust approach to automatic
speech recognition based on a mixture of Bayesian joint fac-
tor analyzers. In this approach, noisy features are modeled by
two joint groups of factors accounting for speaker and noise
variabilities which are estimated by clean and noisy speech re-
spectively. The factors form an overcomplete dictionary with
a redundant representation. Automatic relevance determination
(ARD) is carried out by the relevance vector machine (RVM)
where sparsity-promoting priors are applied on two factor load-
ing matrices. Experiments on large vocabulary continuous
speech recognition (LVCSR) tasks show good improvements by
this approach.
Index Terms: Bayesian joint factor analysis, automatic rele-
vance determination, relevance vector machine, noise robust-
ness, LVCSR

1. Introduction
Joint factor analysis (JFA), as an extended form of the classi-
cal factor analysis (FA)[12][13], aims to interpret the observed
signals by multiple distinct groups of underlying factors. In re-
cent years, it finds its success in a variety of speaker recognition
and verification tasks [1][2][3][4] where JFA is used to model
speaker and channel variabilities and yields the state-of-the-art
performance. In those applications, JFA is conducted in a very
high dimensional space of supervectors. The total number of
underlying factors is smaller than the dimension of the super-
vectors and is usually determined by heuristics.

In this paper, we investigates a feature compensation
scheme based on joint factor analysis for noise robust automatic
speech recognition (ASR). Specifically, we model the noisy fea-
tures by a mixture of Bayesian joint factor analyzers where each
joint factor analyzer has two groups of factors to explicitly de-
scribe speaker and noise variabilities. The whole set of factors
creates an overcomplete dictionary for a redundant representa-
tion of the noisy features. Automatic relevance determination
(ARD) [7] is carried out to automatically learn the effective un-
derlying factors given the training data by the relevance vec-
tor machine (RVM) [5] where sparsity-promoting priors are ap-
plied to the two factor loading matrices.

In this Bayesian framework, the hyper-parameters of the
prior distributions are estimated under the type-II maximum
likelihood (ML) criterion [7] while ML estimates of the
other parameters are obtained by the Expectation-Maximization
(EM) algorithm [6]. The factors for speaker variability are
learned from clean speech while the factors for noise variability
are learned from noisy speech given the estimated speaker fac-
tors. In particular, the two groups of factors are initialized by
probabilistic principal component analysis (PPCA) [8], which

corresponds to eigen-voice and eigen-noise, respectively.
In the noise compensation stage, both speaker and noise

variabilities are estimated based on the whole factor dictionary
and the noise component is removed as the undesired variability
from the input noisy speech.

The remainder of the paper is organized as follows. Section
2 presents the mathematical formulation of the proposed mix-
ture of Bayesian joint factor analyzers. Section 3 gives the de-
tails of the stage-wise parameter estimation of the two groups
of factors using clean and noisy speech. Section 4 describes
how the noise compensation is performed to recover the clean
speech. Experimental results on large vocabulary continuous
speech recognition (LVCSR) are reported in Section 5.

2. Mixture of Bayesian Joint Factor
Analyzers

Let y be the observation vector. Define a mixture of factor ana-
lyzers

y =

KX
k=1

ckϕk(y) (1)

where ck are the mixture weights and ϕk(y) is a factor analyzer
in component k which has the following form

ϕk(y) = μk + Akξk + Bkηk + εk. (2)

In Eq.2, Ak and Bk, which are known as factor loading matri-
ces in the FA literature, are referred to as factor dictionaries in
this paper. They are used to describe distinct speech variabili-
ties. Specifically, in the context of noise robustness discussed
here where y are noisy speech features, Ak and Bk are for
speaker and noise variabilities, respectively. ξk and ηk are la-
tent variables and εk is a random variable for the residual. They
all obey Gaussian distributions:

p(ξk) ∼ N (ξk;0, I) (3)
p(ηk) ∼ N (ηk; 0, I) (4)
p(εk) ∼ N (εk;0, Ψk) (5)

whereΨk is a diagonal matrix.
Define

Wk = [Ak Bk] and ζk = [ξT

k η
T

k ]
T

(6)

Eq.2 can be rewritten as

ϕk(y) = μk + Wkζk + εk (7)

and p(ζk) ∼ N (ζk;0, I).
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Integrating out the latent variable ζk and the residual vari-
able εk, the distribution of y in mixture component k is a Gaus-
sian

pk(y) ∼ N (y; μk,Σk) (8)

where

Σk = WkW
T

k + Ψk = AkA
T

k + BkB
T

k + Ψk (9)

Accordingly, the mixture of factor analyzers in Eq.1 is equiva-
lent to a Gaussian mixture model (GMM)

p(y) =

KX
k=1

ckN (y; μk,Σk) (10)

The overall factor dictionary Wk in Eq.7 is chosen to be
overcomplete and the RVM is used to learn the sparse underly-
ing factors that can effectively interpret the training data. Given
the way Ak and Bk are separately estimated using clean and
noisy speech, the following prior distributions are applied on
Ak andBk

p(Ak|α
(A)
k ) =

d−1Y
i=1

„
α

(A)
k,i

2π

« d
2

exp

j
−

1

2
α

(A)
k,i a

T

k,iak,i

ff
(11)

p(Bk|α
(B)
k ) =

d−1Y
i=1

„
α

(B)
k,i

2π

« d
2

exp

j
−

1

2
α

(B)
k,i b

T

k,ibk,i

ff
(12)

where ak,i and bk,i are the columns of factor dictionaries Ak

and Bk and d is the dimensionality of the input features. The
numbers of columns of both dictionaries are equal to d−1 for a
reason that will become clear shortly. Based on the RVM theory
[5], if an atom (i.e. a column) wi in the dictionary is poorly
aligned with the training data, its hyper-parameter αi will be
driven to infinity and this atom will be effectively switched off.

3. Parameter Estimation
Since we want to explicitly use Ak to describe speaker vari-
ability and Bk to describe noise variability, the parameter esti-
mation is conducted in a stage-wise manner. The speaker fac-
tor dictionary Ak is first estimated using the clean speech by
nulling the noise factor dictionary Bk. Given the estimated
speaker factor dictionary Ak, the noise factor dictionary Bk

is then estimated using the noisy speech.

3.1. Estimation ofAk

Let x be the observed clean features. To estimate the speaker
dictionary Ak in component k, the noise dictionary Bk is
nulled and Eq.2 becomes

ϕk(x) = μk,a + Akξk + εk. (13)

The ML estimation is initialized by assuming an isotropic resid-
ual covariance

Ψk = σ
2
kI (14)

which corresponds to a PPCA setting [8]. It has a closed-form
solution

μk,a =

PT

t=1 γk(t)xtPT

t=1 γk(t)
, σ

2
k =

1

d− q

dX
j=q+1

λk,j (15)

Ak = Uk,q(Λk,q − σ
2
kI)

1/2 (16)

where {λk,1, · · · , λk,d} are the eigenvalues, in the decreasing
order, of the sample covariance of component k

Sk =

PT

t=1 γk(t)(xt − μk,a)(xt − μk,a)TPT

t=1 γk(t)
(17)

with T being the total number of samples and γk(t) the pos-
terior probability of component k at time t. Matrix Uk,q

has q eigenvectors as its columns corresponding to the first
q most significant eigenvalues {λk,1, · · · , λk,q} and Λk,q =
diag{λk,1, · · · , λk,q}. The estimate of σ2

k is simply the sum of
the rest of the d−q eigenvalues divided by d−q. The number of
factors q is set to d−1 which is the maximum value allowed by
PPCA. Given the way Ak are computed in Eq.16, it is equiva-
lent to eigen-speaker or eigen-voice modeling in a probabilistic
linear-Gaussian form.

After the eigen-speaker initialization, the speaker factor
dictionaryAk are then estimated by removing the isotropic con-
straints in Eq.14. There is no closed-form solution in this case
and the parameters can be updated iteratively. First of all, it can
be shown that the hyper-parameter of the prior distribution can
be updated by the type-II ML criterion [7][9]

eα(A)
k,i ≈

d

||ak,i||2
(18)

Other parameters can be estimated by the EM algorithm [7].
In the E-step, compute

E[ξk,t] = GkA
T

kΨ
−1
k (xt − μk,a) (19)

E[ξk,tξ
T

k,t] = Gk + E[ξk,t]E[ξk,t]
T (20)

whereGk = (I + AT

kΨ
−1
k Ak)−1.

In the M-step, first define

Lk �

PT

t=1 γk(t)E[ξk,tξk,t
T]PT

t=1 γk(t)
(21)

= Gk + GkA
T

kΨ
−1
k SkΨ

−1
k AkGk (22)

Rk �

PT

t=1 γk(t)(xt − μk,a)E[ξk,t]
TPT

t=1 γk(t)
(23)

= SkΨ
−1
k AkGk (24)

Ψk = diag{σ2
k,1, · · · , σ

2
k,d} (25)

Δk = diag{α(A)
k,1 , · · · , α

(A)
k,d−1} (26)

It can be shown that the parameters are updated as follows [9]

eck =
1

T

TX
t=1

γk(t), eμk,a =

PT

t=1 γk(t)xtPT

t=1 γk(t)
(27)

ēa(A)
k,i = r̄k,i(

σ2
k,iPT

t=1 γk(t)
Δk + Lk)−1

, i = 1, · · · , d (28)

eΨk = diag
n
Sk − eAkGkA

T

kΨ
−1
k Sk

o
(29)

where ā and r̄ are rows ofA andR.

3.2. Estimation of Bk

When the speaker factor dictionary Ak is learned, Bk is re-
introduced back to Eq.2 and estimated for each component us-
ing the noisy speech. To initialize, the noise component is first
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predicted from the noisy features. Given an observed noisy fea-
ture y, the corresponding clean speech component is predicted
in component k as

x̂k = μk,a + AkE[ξk|y] (30)

= μk,a + AkGkA
T

kΨ
−1
k (y − μk,a) (31)

and accordingly the noise component is

nk = y − x̂k (32)

Following a similar procedure from Sec. 3.1, an isotropic resid-
ual covariance matrix is first assumed as Eq.14 andBk are com-
puted in the PPCA framework as

μk =

PT

t=1 γk(t)ytPT

t=1 γk(t)
, μk,b = μk − μk,a (33)

Bk = Uk,d−1(Λk,d−1 − σ
2
kI)

1/2
, σ

2
k = λk,d (34)

where the number of the columns of Bk is also set to d− 1
and Uk,d−1 is composed of d−1 eigenvectors of the sample
covariance of nk in component k

Sk =

PT

t=1 γk(t)(nk,t − μk,b)(nk,t − μk,b)
TPT

t=1 γk(t)
(35)

as its columns corresponding to the d−1most significant eigen-
values {λk,1, · · · , λk,d−1} in decreasing order. Therefore, the
noise factor dictionary initialized this way is equivalent to an
eigen-noise model setting.

Once the noise factor dictionary has been initialized, the
parameters are updated iteratively. Following a similar deriva-
tion of Eq.18, one has the type-II ML estimate of the hyper-
parameter

eα(B)
k,i ≈

d

||bk,i||2
(36)

The remaining parameters are estimated by the EM algorithm.
In the E-step, define the auxiliary function

Q(λ, λ̄) = EZEΩ[log p(Y , Z, Ω)p(W|α)|Y , λ)] (37)

=
TX

t=1

KX
k=1

γk(t)EZ [log p(yt, ζt, k|Y , λ)p(W|α)] (38)

where Y = {y1, · · · , yT } are noisy observation vectors;
Z = {ζ1, · · · , ζT } are latent factor dictionary weighting co-
efficients; Ω = {ω1, · · · , ωT } are latent component indices in
the mixture. To estimateBk, express the auxiliary function with
respect toBk

QBk (λ, λ̄) =
TX

t=1

KX
k=1

γk(t)

j
2Tr(Ψ−1

k AkE[ξk,tη
T

k,t]B
T

k)

+ Tr(Ψ−1
k BkE[ηk,tη

T

k,t]B
T

k)− 2(yt − μk)T
Ψ
−1
k (BkE[ηk,t])

ff

+

d−1X
i=1

α
(B)
k,i b

T

k,ibk,i + const (39)

Taking the derivative with respect to Bk and setting it to
zero, one has

ΨBkΔk + Bk

TX
t=1

γk(t)E[ηk,tη
T

k,t] =

TX
t=1

γk(t)(yt − μk)E[ηT

k,t]−
TX

t=1

γk(t)AkE[ξk,tη
T

k,t] (40)

Define the following matrices

Lk �

PT

t=1 γk(t)E[ηk,tη
T

k,t]PT

t=1 γk(t)
(41)

Rk �

PT

t=1 γk(t)(yt − μk)E[ηT

k,t]−
PT

t=1 γk(t)AkE[ξk,tη
T

k,t]PT

t=1 γk(t)
(42)

SinceΨk is diagonal, Eq.40 can be solved row by row. Let b̄k,i

be the ith row of the dictionary Bk and r̄k,i be the ith row of
matrixRk, then Eq.40 can be expressed as2666664

b̄k,1

„
σ2

k,1
P

T
t=1

γk(t)
Δk + Lk

«
...

b̄k,d

„
σ2

k,d
PT

t=1
γk(t)

Δk + Lk

«
3777775 =

2666664
r̄k,1

...

r̄k,d

3777775 (43)

It follows that

ēbk,i = r̄k,i

 
σ2

k,iPT

t=1 γk(t)
Δk + Lk

!
−1

, i = 1, · · · , d

(44)

where

Δk = diag{α(B)
k,1 , · · · , α

(B)
k,d−1} (45)

Analogously, taking the derivative of the auxiliary function
with respect toΨk and setting it to zero, one has

Ψk =diag
j
Sk −

1PT

t=1 γk(t)

»
2Wk

TX
t=1

γk(t)E[ζk,t](yt − μk)T

−Wk

TX
t=1

γk(t)E[ζk,tζ
T

k,t]W
T

k

–ff
(46)

=diag
j
Sk − 2WkGkW

T

kΨ
−1
k Sk + Wk(Gk+

GkW
T

kΨ
−1
k SkΨ

−1
k WkGk)WT

k

ff
(47)

The updates of mean μb and mixture weight ck are the same as
Eq.33 and Eq.27, respectively.

4. Noise Compensation
After the model parameters are in place, the predictive distri-
bution of y is a GMM distribution under the assumption of a
sharp peak around the MAP estimate ofWMAP

k . Given the input
noisy features, yt, the noise variability can be estimated in each
mixture component k as

nk,t = μk,b + BkE[ηk,t|yt] (48)

We consider the noise variability nk,t undesired and want to
remove it from yt to predict the underlying clean speech

x̂t =
KX

k=1

p(k|yt)(yt − nk,t) = yt −
KX

k=1

p(k|yt)nk,t (49)

To compute E[ηk,t|yt], one can first compute

E[ζk,t|yt] = GkW
T

kΨ
−1
k (yt − μk) (50)
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withGk = (I+WT

kΨ−1
k Wk)−1 and then takeE[ηk,t|yt] as a

sub-vector ofE[ζk,t|yt]. Or one can explicitly writeE[ηk,t|yt]
in a sub-matrix expression for computational advantages.

Eq.49 shows that the mixture of joint factor analyzers inves-
tigated here is equivalent to a piece-wise linear mapping func-
tion where each joint factor analyzer contributes locally as a lin-
ear mapping function from its region in the input feature space
defined by the soft cluster of the mixture model.

5. Experimental Results
Experiments were conducted on English LVCSR. The clean
speech has 60 hours of data. The noisy speech is multi-
conditional, artificially generated by corrupting another set of
clean speech with 10 types of background noise including
M109, Buccaneer, Leopard, wheel carrier, destroyer oper-
ation room, HF radio, babble, factory, car and white noise.
The SNR of each utterance in the noisy channel is randomly
chosen from the 25dB to 10dB range. There is no speaker over-
lap between the clean and noisy speech.

The test sets consist of two scenarios: unseen conditions
(Set A) and real conditions (Set B). Set A is composed of
noisy speech (4 speakers, 1.1 hours) artificially generated from
5 types of background noise that didn’t appear in the training
set. They are Lynx, machine gun, STITEL, F-16 and pink
noise. The SNR of each utterance is randomly chosen from the
range of 15dB to 5dB. The Set B (7 speakers, 1.9 hours) con-
sists of speech recorded in real-world humvee-tank noise with
SNRs estimated at 5-8dB. All the noise samples are from the
NOISEX-92 dataset [11].

The feature space is constructed by splicing 9 frames of 24-
dim PLP features and then projecting down to a 40-dim linear
discriminant analysis (LDA) space with a global semi-tied co-
variance (STC) transformation. Both ML models and discrimi-
native (FMMI and BMMI [10]) models are trained. The speaker
factor dictionaries Ak of the mixture of Bayesian joint factor
analyzers are initialized by PPCA and iteratively updated for 30
iterations. The noise factor dictionaries Bk are initialized by
PPCA and iteratively updated for 20 iterations. There are 512
components in the mixture. Fig.1 demonstrates the sparsity of
the speaker (upper panel) and noise (lower panel) factor dic-
tionaries from one of the 512 components. The inverse of the
hyper-parameter α is shown in the figure. For those α’s that are
driven to infinity, the corresponding columns (or atoms) in the
factor dictionary are switched off.

5 10 15 20 25 30 35
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0.2

0.25
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5 10 15 20 25 30 35
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5
x 10−3
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Figure 1: Sparsity of columns in speaker (upper panel) and
noise (lower panel) factor dictionaries. 1

α
is shown in the figure.

Two sets of experiments were conducted. One is decoding

compensated noisy speech with a clean acoustic model. The
other is decoding compensated noisy speech with a multi-style
(MST) acoustic model trained on compensated noisy speech.

The clean acoustic model consisting of 5K quinphone states
and 100K Gaussians is trained on 280 hours of clean speech.
The trigram language model has 330K n-grams built on a vo-
cabulary of 45K words with 56K pronunciations. Table 1 shows
the baseline performance and performance with the proposed
JFA compensation. If the JFA compensation is performed in the
LDA feature space, the WER improves from 33.6% to 33.2%
for Set A and 36.2% to 22.3% for Set B. If the JFA compen-
sation is performed in the FMMI feature space, the WER im-
proves from 26.5% to 26.1% for Set A and 22.2% to 21.5%
for Set B. Feature space maximum likelihood linear regression
(FMLLR) is applied in all experiments.

dataset Set A Set B
LDA+FMLLR 33.6 36.2
FMMI+BMMI+FMLLR 26.5 22.2
LDA+JFA+FMLLR 33.2 22.3
FMMI+JFA+BMMI+FMLLR 26.1 21.5

Table 1: WERs(%) of baseline and JFA compensation on clean
acoustic models.

Table 2 shows the performance on MST models. The MST
models have 2K quinphone states and 80K Gaussians. The ML
and FMMI+BMMI baseline models shown in the first two rows
of the table are trained on the 60 hours of noisy speech. The
next two rows are the WERs of JFA compensated MST mod-
els where the JFA is first estimated from the 60 hours of clean
speech and 60 hours of noisy speech, and then the estimated
JFA is used to compensate the 60 hours of noisy speech which
is then re-trained for the MST model. The LM and dictionary
are the same as the clean acoustic model decoding. Again, FM-
LLR is applied to all experiments. JFA compensation is per-
formed in the LDA space. For ML models, the JFA compensa-
tion improves WERs from 43.1% to 36.7% for Set A and 20.6%
to 19.3% for Set B. When FMMI+BMMI models are further
trained, the improvements are from 39.1% to 32.3% for Set A
and 19.0% to 17.3% for Set B.

dataset Set A Set B
LDA+FMLLR 43.1 20.6
FMMI+BMMI+FMLLR 39.1 19.0
LDA+JFA+FMLLR 36.7 19.3
LDA+JFA+FMMI+BMMI+FMLLR 32.3 17.3

Table 2: WERs(%) of baseline and JFA compensation on MST
acoustic models.
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