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ABSTRACT

Acoustic model parameter estimation is hampered by a lack of data.
To reduce the number of parameters to be estimated, we propose
sub-GMM modelling, which constrains the acoustic models to a low-
dimensional manifold embedded in the space of Gaussian mixture
weights. The manifold model is obtained through non-negative ma-
trix factorization with sparsity constraints. Our preliminary mono-
lingual experiments show that the proposed model is as efficient as
clustering the distributions to a smaller set, while it opens perspec-
tives for a new parameter tying technique. In the example, the num-
ber of parameters to be estimated per distribution is reduced more
than an order of magnitude.

Index Terms— under-resourced languages, manifold, sparsity,
non-negative matrix factorization, substructure

1. INTRODUCTION

State-of-the art context dependent (CD) hidden Markov model
(HMM) based speech recognition systems model each CD phone
by a multi-state HMM. Nowadays, acoustic models are trained on
hundreds to thousands of hours of speech [1], where we observe an
effect of diminishing returns as we add more data. Even for this size
of the training data, it is not feasible to reliably estimate the large
numbers of parameters in CD models without parameter tying tech-
niques, as will be discussed below. For so-called under-resourced
languages, the amount of training data that is available is only a
few hours to tens of hours, which motivates this effort to revisit
parameter tying. The amount of data aligned to each CD phone state
is unevenly distributed. For some HMM states, there are sufficient
training data to estimate a Gaussian mixture model (GMM) with
a sufficient number of components to obtain a good accuracy. For
other states there may be very little or even no data to reliably esti-
mate the hundreds or thousands of parameters of a state GMM. To
mitigate this scarce data problem, GMM parameters are tied with
various methods and at different hierarchical levels. For instance,
complete phones may be shared (customary for e.g. context inde-
pendent filled pause model), state emission density models (GMMs)
can be shared in a phonetic decision tree (PDT) [2][3], or Gaussian
components can be shared among different GMMs, a method that is
also applied in this study with algorithmic and optimisation aspects
discussed in [4]. In the PDT, CD states are clustered for similarity of
their GMMs and eventually share a common GMM. Because the cri-
teria for traversing the decision tree are phonetic questions about the
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conditioning phone context, they have the property of generalizing
to unseen contexts. While a PDT drastically reduces the number of
GMMs to be trained, it needs to be created from language-specific
data. A phonetic decision tree derived from another language can-
not be cloned to the under-resourced language, given that the tree
leaves which are populated in the other language may not be pop-
ulated for the under-resourced language, while other leaves may be
over-represented. Several techniques have been proposed to cope
with the data scarcity problem when handling under-resourced lan-
guages. Bootstrapping [5], adaptation and cloning models from
existing languages [6] have shown to improve the performance of
speech recognition systems when only limited amounts of training
data are available. [7] explores the combination of universal feature
detectors with language specific rule-based phone models. In [8],
a rapid language adaptation ASR system for under-resourced lan-
guages based on multilingual unsupervised training is described.
The cross-language transfer hypotheses are used as transcriptions.

In this paper, we exploit the fact that the distributions of speech
features cannot take any form and hence must be constrained to a
manifold. We further propose a linear model on the mixture weights
in GMMs to describe the speech manifold. Non-negative matrix fac-
torization (NMF) [9] is used to estimate the manifold model from
trained GMMs. The fundamental idea of NMF is to approximate
a non-negative matrix as a product of two non-negative matrices: a
low-rank matrix of latent vectors and the latent vector coefficient
matrix. The latent vectors can be interpreted as the GMM weights of
sub-GMMs, i.e. the NMF decomposes every GMM into a weighted
addition of these sub-GMMs.

The primary goal of this paper is to evaluate the feasibility of
this new parameter tying concept that exploits sparsity properties of
non-negative linear combinations. While it is not a finished end-
to-end study, this paper describes the idea and tests its fundamental
hypothesis that the GMMs can be adequately represented by a re-
stricted set of sub-GMMs that are combined sparsely. Also, it re-
ports on the algorithms to construct the sub-GMMs.

This paper is organized as follows. In section 2, the geometric
formulation of the low-dimensional manifold is illustrated. In sec-
tion 3, we explain the manifold model. In section 4, NMF and the
resulting modelling with mixtures of sub-GMMs is introduced. We
describe the sparsity constraints in detail in section 5. In section 6 we
describe our speech recognition system and analyze the recognition
results. Conclusions are presented in section 7.

2. GEOMETRIC PERSPECTIVE

Given the few degrees of freedoms of the speech generation appa-
ratus, the human voice cannot produce any arbitrary sound. When
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short speech segments are mapped to an acoustic space, the reach-
able points lie on a manifold which is embedded in the high dimen-
sional acoustic space [10]. This low-dimensional manifold is pre-
sumed to be general and to persist across languages. It is reasonable
to assume that this manifold can be described by making acoustic
models for all sounds in a set of reference languages. Any sound of
a new, possibly under-resourced, language lies on this manifold and
should have a coordinate on the manifold.

In this paper, the acoustic space is parameterised by the mix-
ture weights of Gaussians shared across all CD states (the last tying
mechanism described in section 1). A point in this acoustic space
represents a GMM. In [4], it was shown that, at least for monolin-
gual data, this parametrisation with shared Gaussians can result in
accurate acoustic models. In the proposal of this paper, the pool of
shared Gaussians is envisaged to be obtained from training HMMs
on a set of reference languages, but the actual method for doing so
is not the focal point of this paper. The set of reference languages
should be rich enough to span all sounds of the target language in
the sense that will become clear below.

Speech recognition models are described by the GMMs of all its
CD states. Hence, a language is described by a collection of GMMs
that occupy a set of points in the GMM space. All languages to-
gether define a manifold of interest in the GMM space. For lan-
guages with abundant data, the GMM parameters can be estimated
reliably, hence providing reference points on the speech manifold.
For an under-resourced language it is not possible to measure points
on the manifold. Instead, a manifold model is used to constrain the
GMMs so they can be estimated reliably from small amounts of data.
In other words, by exploiting the manifold constraint, only the coor-
dinates on this low-dimensional manifold need to be estimated.

3. MANIFOLD MODEL

Let N be the number of Gaussians, shared among all states. The
GMM for HMM state s is completely described by the N mixture
weights λns, which lie on the (N − 1)-simplex

PN
n=1 λns = 1

with λns ≥ 0, in which the speech manifold is embedded. Different
methods can be used to constrain a point (a GMM) to the manifold.
In quantization, a noisy estimate (due to lack of data) of a GMM is
replaced by the closest (e.g. in the sense of Kullback-Leibler diver-
gence) reference point on the manifold. In other words, each GMM
of the new language is quantized by its unique closest neighbour in
one of the reference languages. Hence, a nearest-neighbour (vector
quantization), memory or exemplar representation of the manifold is
applied.

In the present paper, we propose a linear model to describe the
manifold.

λs = Whs (1)

where λs = [λ1s, · · · , λNs]
t is the set of GMM weights that model

CD phone state s. W is the N × L matrix containing the non-
negative mixture weights of the L < N sub-GMMs and hs is the
state-specific vector of non-negative weights with which the sub-
GMMs are linearly combined. The columns of W and the vector hs

are constrained to unity L1 norm, so eqn. (1) constrains the GMM
λ to a (L− 1)-dimensional subspace. However, with non-negativity
and sparsity constraints on hs, the GMM models are constrained fur-
ther. The manifold model W is estimated from a total of S observed
reference points:

V ≈WH (2)

with VN×S , WN×L and HL×S . where V is the matrix obtained
by stacking all reference points (GMM coefficient vectors) as its

columns. Other than in the quantization model described above,
the manifold model W is a regression model through the refer-
ence points and is hence more robust to estimation uncertainty in
the GMMs of the reference language. Also, eqn. (1) allows sparse
interpolation between the sub-GMMs (columns of W).

The model finally contains L sub-GMMs, modelling the speech
manifold linearly. This is very different from a traditional clustering
approach where the S reference GMMs would be assigned to one of
L clusters. Each cluster is a GMM joining its member GMMs, thus
spreading the probability mass over a larger area in feature space.
Contrarily, the proposed model seeks to obtain GMMs with a smaller
extent, hence the name “sub-GMMs”.

4. NON-NEGATIVE MATRIX FACTORIZATION

In this research, we use non-negative matrix factorization (NMF) [11]
to estimate the Gaussian mixture weights of the sub-GMMs needed
to describe a new language. Non-negative matrix factorization,
which performs matrix factorization and dimension reduction, ap-
proximates a non-negative matrix V as a product of a lower rank
non-negative latent vector matrix W and a corresponding non-
negative coefficient matrix H which are compact and rich enough
to approximately reconstruct the original matrix. The matrix factors
are found by minimizing a distortion measure between V and WH,
such as Kullback- Leibler divergence (KLD) [9], Euclidean distance
(EU), Itakura-Saito divergence or the more general formulations
with α-divergence, β-divergence, γ-divergence [12]. The choice of
cost function depends on the underlying probabilistic formulation.
As will be motivated below, a maximum likelihood formulation
will lead to the KLD cost function. The KLD between the mix-
ture weights of two GMMs also approximates the KLD between
the GMMs provided the overlap between the Gaussians is small,
which makes it a natural method to measure how well a GMM is
approximated by a point on the manifold.

The matrices W and H in eqn. (2) are chosen to maximize
the likelihood of the training data from all the reference languages,
which is equivalent to maximizing the following auxiliary function:

Q(W,H) =
X
n,s

γns log(λns) (3)

where γns is the accumulated posterior probability of Gaussian n at
HMM state s. The Gaussian mixture weights λns are constrained to
a linear combination of L latent vectors wl which span the manifold
given by eqn. (1). To satisfy the normalization constraint of λns, it
is required that  P

n wnl = 1, ∀lP
l hls = 1, ∀s (4)

The KLD cost function for NMF is given by

D(V||WH) =
X
n,s

»
vns log

vns

(WH)ns
− vns + (WH)ns

–
(5)

When choosing [V]ns = γns, minimizing eqn. (5) over W and H
under constraints eqn. (4) is equivalent to maximizing eqn. (3) under
the same constraints.

The resulting multiplicative update rule for W and H are similar
to the ones given in [9]:8>>><>>>:

wnl =
1

ηW
l

wnl

X
s

γnshls

(WH)ns

hls =
1

ηH
s

hls

X
n

γnswnl

(WH)ns

(6)
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with ηW
l and ηH

s the normalization factors, which assure that the
constraints from eqn. (4) are satisfied. The fixed point updates of W
and H are repeated for a fixed number of times (see section 6) which
is assumed to be sufficient for convergence.

For a new under-resourced language and given the estimated W,
the coordinates on the manifold can be estimated by maximizing
the likelihood of the language-specific speech data. Maximizing the
likelihood is equivalent to maximizing the auxiliary function (3) as
a function of ĥ. The multiplicative update formula for ĥ is

ĥl = ĥl

NX
n=1

γnwnlPL
j=1 wnj ĥj

(7)

where γn is the posterior probability of Gaussian n accumulated
over the available data.

5. SPARSITY

Both W and H are expected to have sparse structures. Each column
of W should form a sub-GMMs: each GMM is a linear combination
of these substructures, i.e. the columns W are the parts or atoms that
the GMM’s are composed of. It is to be expected that these parts
contain less Gaussians than the original GMMs themselves, i.e. W
should be more sparse than V. If it would not be more sparse, it
would rather be a clustering of the GMMs into less accurate, merged
units and NMF would not be finding the substructures of the GMMs.
On the other hand, we don’t want the trivial decomposition that the
sub-GMMs are the Gaussians themselves i.e. a column of W has
only one non-zero element.

To generate a sparse W and meanwhile prevent the uninforma-
tive matrix factorization case, extra constraints are applied on both
W and H. By applying these sparsity constraints, the columns of
W will be constrained to localize towards the substructures of the
GMMs. Sparsity is often implemented by L1-regularization [13].
However, while these methods can increase the sparsity, they do not
enforce a maximum on the L0 norm of each column, i.e. the num-
ber of non-zero elements (this is also the case for [14]). Hence, we
opted for an alternative approach: during the iteration eqn. (6), spar-
sity in W and H are enforced by counting the number of non-zeros
elements in each column of W and H and if the counts are larger
than a targetKW andKH respectively, the smallest entries are set to
zero. Given the zero-locking property of update eqn. (6), elements
will remain zero once set to zero. Meanwhile, the columns with less
thanKW orKH non-zero elements should allow for additional non-
zeros. In other words, Gaussian components should be allowed to
migrate from sub-GMMs with too many components to sub-GMMs
with too few components.

The algorithm for non-negative matrix decomposition with max-
imum column support (the number of non-zero elements) of KW

and KH of respectively W and H is outlined in 1. In other re-
search, we have obtained better NMF results with a simulated an-
nealing technique [15] where in each iteration of eqn. (6), we add
noise matrices homomorphous to W resp. H. The noise matri-
ces are constructed with i.i.d. entries uniformly distributed between
0 and 1, normalized column-wise to unit L1-norm, scaled with W
resp. H and with an exponentially decreasing function of the itera-
tion number. With this technique, the cost function values obtained
are generally smaller, i.e. it is better at avoiding local extrema. By
setting KH = L (or KW = N ) no sparsity is enforced on H (or
W).

Algorithm 1 Non-negative matrix decomposition with maximum
column support of KW resp. KH .

Step 1 : Set the N × L mask matrix MW equal to all ones. Set
the L× S mask matrix MH equal to all ones.
Step 2 : Perform an NMF without sparsity constraints using sim-
ulated annealing. In each iteration, multiply W with MW and
multiply H with MH .
Step 3 : For each column of W, count the number of non-zero
elements. If larger thanKW , set the entries in MW corresponding
to the 10% smallest entries of the column to zero (rounded to the
nearest integer and at least one). Likewise, for each column of H,
count the number of non-zero elements. If larger thanKH , set the
entries in MH corresponding to the 10% smallest entries of the
column to zero.
Step 4 : If all columns of W have at mostKW non-zero elements,
and all columns of H have at most KH non-zero elements, stop;
else goto step 2.

6. EXPERIMENTS

6.1. Experimental setup

As mentioned in the introduction, the main goal of this paper is to
evaluate the sub-GMM model. A cross-language experiment will
require at least an HMM training in a set of reference languages,
a method for building a compact Gaussian set (i.e. Gaussians are
shared efficiently across languages) and also to develop a method to
construct a phonetic tree from scarce data. Note that the maximum
likelihood formulation of section 4 offers opportunities for cluster-
ing based on the sparse weights hls. These approaches will require
further in-depth studies and are beyond our current focus. In the cur-
rent experiments, we want to evaluate whether the proposed mani-
fold model is capable of producing HMMs with sufficient accuracy.
Rather than clustering GMMs (sparsity in W smaller than sparsity
in V – see section 2 ) the NMF model should yield decomposition
into sub-HMMs (sparsity in W greater than sparsity in V).

Training is done on the SI-284 data from the Wall Street Journal
(WSJ) comprising 81 hours from 284 speakers. The baseline speech
recognizer used in our experiments is a semi-tied Gaussian mixture
HMM system. The system uses a shared pool of 32754 Gaussians
to model the observations in 5967 cross-word context-dependent tied
triphone states (GMMs). All acoustic units –context-dependent vari-
ants of one of the 42 phones or silence– have a 3-state left-to-right
topology. The silence HMM is excluded from this analysis. The
acoustic features consist of 22 MEL spectra with mean normaliza-
tion and VTLN, augmented with their first and second order time
derivatives, which results in 66 dimensional feature vectors. These
features are then mapped to a 39 dimensional space by means of a
discriminative linear transformation and decorrelation.

For developing and evaluating the system, we combined the
WSJ 5k closed and 20k open vocabulary non-verbalized punctua-
tion Nov92 and Nov93 tasks. By combining all evaluation data, we
obtained one large evaluation set containing 101 minutes of speech
(18298 words). The combination of all corresponding development
data was used to tune system parameters such as pruning thresholds
and the weight ratio between the language model and the acoustic
model.

The proposed speech manifold model is used to decompose and
reconstruct the Gaussian mixture weights of the acoustic models.
The performance of the proposed NMF method with 1800 iterations
for eqn. (6) is evaluated by applying the reconstructed Gaussian mix-
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HMM L KW V0.99 W0.99 H0.99 WER(%)

SIcd
5964 / 84.7 / / 6.42
1007 167.6 7.19

sub-
GMM

1000

N 84.7

132.9 2.6 7.18
2000 104.0 2.9 6.74
2500 100.5 2.8 6.67
3000 97.1 2.7 6.39

1000 100 84.7 81.8 5.2 7.10
80 67.9 6.5 7.28

Table 1. Word error rate. SIcd : CD speaker independent baseline
system. The L for SIcd refers to the number of tied states.

ture weights λ̂ = WH as the new Gaussian mixture weights of the
acoustic models.

6.2. Results

As explained in section 3, it is key that the sub-GMM models use less
Gaussians that the original GMMs, i.e. that the columns of W are
more sparse than those of V. The sparsity metric used here, called
99% sparsity, is the average (over columns) of the cardinality of the
minimal set of elements required to cover 99% of the probability
mass of a column. This is listed in Table 1 as W0.99 and H0.99. For
comparison, the trivial decomposition with L = 5964 and W = V
and H equal to the identity matrix is shown. For comparison with
the caseL = 1000, a model where the PDT was pruned back to 1007
densities is also built (second row in Table 1. The models without
sparsity constraints do not generate sub-GMMs, as their W0.99 are
larger than 84.7. Rather than modelling a subspace, these models
have a clustering effect, which is also seen from their low value of
H0.99. The models with sparsity constraint do succeed in reducing
W0.99, especially when compared to the model with the PDT with
1007 leaves.

The word error rates (WER) in Table 1 show that the NMF with-
out sparsity constraints seems to be as accurate in clustering as prun-
ing back the PDT. More importantly, with sparsity constraints, the
accuracy loss is minor or non-existent, making the sub-GMM model
a usable manifold parametrisation.

On average, 6.5 non-zero weights in H are needed to model the
source GMMs. This number of parameters is sufficiently low to be
estimated from scarce training data. But the manifold model allows
to generate a greater variety of distribution than quantizing to the
nearest GMM in V. Since the number of coefficients in h to be
estimated is already small, we did not observe obvious performance
differences in our preliminary experiments by also limiting KH .

7. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a new concept to tie model parameters for under-
resourced languages is explained. A low-dimensional manifold is
described by a linear model. By applying NMF with sparsity con-
straints on W (and H), meaningful sub-GMMs are discovered. The
number of parameters to be estimated per GMM is reduced more
than an order of magnitude. This method is quite appealing for
training a phonetic decision tree for under-resourced languages by
only estimating the speech data points on the manifold (i.e. h-
coordinates) in each node of the tree, with increasing the likelihood
as the splitting criterion.

The proposed method is applied to monolingual data. The ob-
vious next step is to proceed as outlined in the first paragraph of

section 6.
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