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I. Historical Remarks



Weighted Transducers in Speech and Language Processing

Weighted finite-state transducers (WFSTs):

• Core component of many modern ASR systems: used by Google, Nuance,

IBM, AT&T among others. Millions of daily users.

• Used as well in speech synthesis, optical character recognition, machine

translation among others

• Over 2700 citations for top ten Google Scholar WFST papers

• Thousands of software downloads: (www.openfst.org)
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Finite-State Automata/Transducers

• Theory:

– Automata: Huffman, 1954; Moore, 1956; Kleene, 1956; Rabin and

Scott, 1959

– Transducers: Meely, 1955, Moore, 1956; Ginsburg, 1962; Eilenberg,

1967

– Weighted Automata/Transducers: Schutenzenberger, 1961; Eilenberg,

1974; Salomaa and Soittola, 1978.

• Speech/NLP Applications:

– Automata: Koskenniemi, 1992; Appelt, 1993; Roche and Schabes,

1995.

– Transducers: Kaplan and Kay, 1981; Karttunen, Kaplan, and Zaenen;

1992; Kaplan and Kay, 1994; Mohri, 1994.

– Weighted Transducers: Pereira, Riley, and Sproat, 1994; Mohri, Riley,

and Sproat, 1996; Pereira and Riley, 1997; Mohri, Pereira and Riley

1998.
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WFSTs in Speech Recognition - I

• Goals (1993): common set of representations, algorithms and tools for

weighted finite automata

• Representation choice:

– Automaton/Acceptor: rational operations (union, concatenation, clo-

sure); determinization and minimization; cascades formed by recursive

replacement (e.g., pronunciations into grammars)

– Transducer: cascades formed by composition

– Context-dependency: how to model phone y/x z, phone y in the con-

text of x and z:

xy y z
y:y/x_z

• Publication: Pereira, Riley, and Sproat, 1994. “Weighted rational trans-

ductions and their application to human language processing”
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WFSTs in Speech Recognition - II

• Non-determinism: How to deal with phonetic redundancy in LVCSR?

– Tree-structured lexicon (Ney, 1992)

– General determinization algorithm (Mohri, 1994; Mohri and Riley, 1997)

WeightedDeterminization(A)

1 i′ ← {(i, λ(i)) : i ∈ I}

2 λ′(i′) ← 1

3 S ←
{

i′
}

4 while S 6= ∅ do

5 p′ ← Head(S)

6 Dequeue(S)

7 for each x ∈ i[E[Q[p′]]] do

8 w′ ←
⊕

{

v ⊗ w : (p, v) ∈ p′, (p, x, w, q) ∈ E
}

9 q′ ← {(q,
⊕

{

w′−1 ⊗ (v ⊗ w) : (p, v) ∈ p′, (p, x, w, q) ∈ E
}

) :

q = n[e], i[e] = x, e ∈ E[Q[p′]]}

10 E′ ← E′ ∪
{

(p′, x, w′, q′)
}

11 if q′ 6∈ Q′ then

12 Q′ ← Q′ ∪
{

q′
}

13 if Q[q′] ∩ F 6= ∅ then

14 F ′ ← F ′ ∪
{

q′
}

15 ρ′(q′) ←
⊕

{

v ⊗ ρ(q) : (q, v) ∈ q′, q ∈ F
}

16 Enqueue(S, q′)

17 return A′
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WFSTs in Speech Recognition - III

• Static compilation:: Can you combine a cross-word context-dependent lex-

icon and and n-gram language model into a single transducer without it

blowing up?

– Less than 2 times larger than the grammar with suitable determiniza-

tion and minimization: Mohri and Riley, 1997

• Dynamic compilation: Can you combine the determinized lexicon and n-

gram language model on-the-fly efficiently?

– Caserio and Trancoso, 2001; Oonishi et al, 2009; Allauzen and Riley,

2010.
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Weighted Transducers in Speech and Language Processing

II. Finite-State Transducers: Algorithms and Applications
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Motivation

• Finite-State Automata/Acceptors: Compact representations of regular (ra-

tional) languages that are efficient to search. Examples: pattern matching

(grep, PCRE), tokenization, compression.

• Finite-State Transducers: Compact representations of rational binary re-

lations that are efficient to search and combine/cascade. Examples: dic-

tionaries, context-dependent rules

• Weighted Automata: Weights typically encode uncertainty as e.g. proba-

bilities. Examples: n-gram language models, language translation models.

• Algorithms: Efficient methods for constructing, combining, optimizing and

searching:

• OpenFst: open-source C++ FST library: www.openfst.org.

• OpenGrm: open-source C++ grammar libraries: www.opengrm.org

– NGram: n-gram language modeling

– Thrax: finite-state (and beyond) rule compiler
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Finite-State Automata

0

a

1
e

b

L(A) = {anbm | n,m ∈ N}

• A transition is labeled with a regular symbol or the empty string, ǫ.

• Acceptance condition: There exists a path from the initial state (denoted

by a bold circle) to a final state (denoted by a double circle).
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Finite-State Automata

• A finite-state automaton A is a 5-tuple (Σ, Q,E, I, F ) with

– Σ, input alphabet

– Q, I ⊆ Q, F ⊆ Q: states, initial states and final states

– E ⊆ Q× (Σ ∪ {ǫ})×Q: transitions [e = (p[e], i[e], n[e]) ∈ E]

• π = e1 . . . ek ∈ E∗ is a path in A if n[ei] = p[ei] for 1 ≤ i < k

[p[π] = p[e1], n[π] = n[en] and i[π] = i[e1]i[e2] . . . i[en]]

• A string x ∈ Σ∗ belongs to L(A), the language accepted by A, if there

exists a path π such that p[π] ∈ I, n[π] ∈ F , i[π] = x.

0

a

1
e

b

L(A) = {anbm | n,m ∈ N}
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Weighted Finite-State Transducers

• Each transition e in a weighted finite-state transducer T has additionally:

– an output label o[e] ∈ ∆ ∪ {ǫ} and

– a weight w[e] ∈ R ∪ {∞}

• The weight associated by T to a pair of strings (x, y) is

T (x, y) = min
π∈P (x,y)

w[π] with

P (x, y) = {π | p[π] ∈ I, n[π] ∈ F, i[π] = x, o[π] = y} ,

w[π] = λ(π) + w[e1] + w[e2] . . .+ w[en] + ρ(π)

0

a:c/1

1
e :e

b:c/1

T (anbm, cm+n) = n+m

Weighted Transducers in Speech and Language Processing II: FST - Algorithms 12



Semirings

More generally, the weight w[e] ∈ K, a semiring, and

T (x, y) =
⊕

π∈P (x,y)

w[π] with

P (x, y) = {π | p[π] ∈ I, n[π] ∈ F, i[π] = x, o[π] = y} ,

w[π] = λ(π)⊗ w[e1]⊗ w[e2] . . .⊗ w[en]⊗ ρ(π)

A semiring (K,⊕,⊗, 0, 1) = a ring that may lack negation.

• Sum: to compute the weight of a sequence (sum of the weights of the paths

labeled with that sequence).

• Product: to compute the weight of a path (product of the weights of con-

stituent transitions).
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Semirings

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ + × 0 1

Log R ∪ {−∞,+∞} ⊕log + +∞ 0

Tropical R ∪ {−∞,+∞} min + +∞ 0

⊕log is defined by: x⊕log y = − log(e−x + e−y)
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Properties

• Recognition power

– A language is recognizable by an FSA iff it is regular

• Closure properties

– Closed under sum (union), product (concatenation), kleene-closure and

reversal, composition, intersection

• Decidability results

– Membership (x ∈ L(A)) is decidable

– Equivalence of two (deterministic) FSAs is decidable

– Equivalence of two FSTs is undecidable

Weighted Transducers in Speech and Language Processing II: FST - Algorithms 15



WFST Algorithms

Union Combines in alternation

Concatenation Combines in sequence

Closure Arbitrary repetition

Reversal Reverses paths

Inversion Inverts binary relation

Projection Projects relation to domain/range

✄ Composition Relational composition of two transducers

✄Determinization Creates equivalent deterministic transducer

Epsilon removal Removes ǫ-transitions

✄ Shortest distance Finds single-source shortest-distances

✄ Shortest path Finds single-source shortest path

Pruning Prunes states and transitions by path weight

Connection Removes non-accessible/non-coaccessible states

✄ Described in this talk
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Composition – Illustration

• Definition:

(T1 ◦ T2)(x, y) = min
z∈Σ∗

(T1(x, z) + T2(z, y))

• Example:

0

1a:b/0.1

2
b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5 0 1
b:c/0.3

2/0.7
a:b/0.4

a:b/0.6

(0, 0) (1, 1)
a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1
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Composition Algorithm

✄ Assuming that T2 has no input-ǫ transitions

• States: (q1, q2) with q1 in T1 and q2 in T2

• Transitions:

– Regular symbol: a ∈ Σ ∪ {ǫ}, b ∈ ∆ and c ∈ Γ ∪ {ǫ}

(q1, a, b, w1, q
′
1) and (q2, b, c, w2, q

′
2) ❀ ((q1, q2), a, c, w1 + w2, (q

′
1, q

′
2))

– Epsilon: a ∈ Σ ∪ {ǫ}

(q1, a, ǫ, w1, q
′
1) and stay in q2 ❀ ((q1, q2), a, ǫ, w1, (q

′
1, q2))

✄ When both sides have epsilons, an epsilon filter is required

• Complexity: O(|T1||T2|) in the worst case
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Determinization Algorithm

0

2
a/1

b/4

1/0

a/3

b/1

3/0

b/1

b/3

b/3

b/5

 {(0,0)} 

{(1,2),(2,0)}/2
a/1

{(1,0),(2,3)}/0

b/1
{(3,0)}/0

b/1

b/3

• Weighted Determinization: Classical subset construction modified to ensure cor-

rect weights

• Transducer Determinization: Application of weighted determinization: output

strings in ∆∗ treated as weights over the string semiring S.

• Weighted Transducer Determinization: Application of weighted determinization:

Weights are in K× S∗

• Applies only to determinizable automata/transducers

Semiring Set ⊕ ⊗ 0 1

String ∆∗ ∪ {∞} ∧ · ∞ ǫ

Product K1 × K2 ⊕1 × ⊕2 ⊗1 × ⊗2 (0, 0) (1, 1)

∧ is the longest common prefix. The string semiring is a left semiring.

Weighted Transducers in Speech and Language Processing II: FST - Algorithms 19



Shortest Distance and Shortest Path

• Given an FST, computes

– Shortest Path: the shortest accepting path in T

– Shortest Distance: the weight of the shortest accepting path in T

• Shortest path algorithm is derived from the shortest-distance algorithm

by keeping track of a parent pointer

• Complexity of the algorithm depends on the queue discipline; linear in |T |

if T is acyclic.
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Shortest Distance Algorithm
• d[q] : minimum weight of a path from the unique initial state i to q

ShortestDistance(T )

1 for each q ∈ Q do

2 d[q]←∞

3 d[i]← 0

4 S ← i

5 while S 6= ∅ do

6 q ← Head(S)

7 Dequeue(S)

8 for each e ∈ E[q] do

9 Relax(n[e], d[q] + w[e],S)

10 return d[f ] ⊲ f is the unique final state

Relax(q, w,S)

1 if d[q] > w then ⊲ if w is a better estimate of the distance from q to i

2 d[q]← w ⊲ update d[q]

3 if q 6∈ S then ⊲ enqueue q in S if needed

4 Enqueue(S, q)
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Application: First-pass ASR

• Context-Dependent Triphone Transducer C:

#,* x,#

x:x/#_#

x,x

x:x/#_x

x,y

x:x/#_y

y,#

y:y/#_#

y,x

y:y/#_x

y,y

y:y/#_y x:x/x_#

x:x/x_x

x:x/x_y

y:y/x_#

y:y/x_x

y:y/x_y

x:x/y_#
x:x/y_x

x:x/y_y

y:y/y_#

y:y/y_x
y:y/y_y

• Pronunciation Lexicon Transducer L:

0

1d:data/1

5

d:dew/1

2 ey:  ε  /0.5 

 ae:  ε  /0.5 

6/0
 uw:  ε  /1 

3
 t:  ε  /0.3 

 dx:  ε  /0.7 
4/0

 ax:  ε  /1 

• N-Gram Word Grammar G: OpenGrm NGram FSAs (www.opengrm.org)
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Recognition Transducer Construction

• Method 1:

C ◦Det(L ◦G)

– Built statically offline due to cost of determinization

– Highly efficient in time - all graph construction pre-compiled

• Method 2:

Det(C ◦ L) ◦G

– Outermost composition with algorithm as described behaves badly

– Solution: generalized composition with lookahead filter: precompute

labels reachable from a (lexicon) state.

– Allows dynamic composition during recognition, trading space for (some)

time
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Recognition Experiments

Broadcast News Voice Search

Acoustic Model

• Trained on 96 and 97 DARPA Hub4 AM training

sets.

• PLP cepstra, LDA analysis, STC

• Triphonic, 8k tied states, 16 components per state

• Speaker adapted (both VTLN + CMLLR)

• Trained on > 1000hrs of voice search queries

• PLP cepstra, LDA analysis, STC

• Triphonic, 4k tied states, 4 - 128 components per

state

• Speaker independent

Language Model

• 1996 Hub4 CSR LM training sets

• 4-gram language model pruned to 8M n-grams

• Trained on > 1B words of google.com and voice

search queries

• 1 million word vocabulary

• Katz back-off model, pruned to various sizes

Weighted Transducers in Speech and Language Processing II: FST - Applications 24



Recognition Experiments

Precomputation before recognition Broadcast News Voice Search

Construction method Time RAM Result Time RAM Result

Static

(1) C ◦ Det(L ◦ G) 7 min 5.3G 0.5G 10.5 min 11.2G 1.4G

(2) Det(C ◦ L) ◦ G 2.5 min 2.9G 0.5G 4 min 5.3G 1.4G

Dynamic

(2) det(C ◦ L) ◦ G none none 0.2G none none 0.5G

Broadcast News Voice Search
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Applications: Various

General form of pipeline:

Result = ShortestPath(Input ◦Det(Model))

Input = string ∨ lattice

Model = Model1 ◦ . . . ◦Modeln

System Result Input Model

Second-pass ASR one-best speech lattice n-gram

Let.-to-sound conversion graphemes phonemes phonotactics ◦ pair n-gram

Case restoration lowercase text mixed-case text pair n-gram

Diacritic restoration ascii text latin-1 text pair n-gram

Spelling correction text corrected text confusion model ◦ n-gram
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Weighted Transducers in Speech and Language Processing

III. Pushdown Transducers: Algorithms and Applications
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Motivation

• Weighted Pushdown Automata/Acceptors: Compact representations of

context-free languages that are efficient to search. Examples: CF LMs,

semantic grammars

• Weighted Pushdown Transducers: Compact representations of simple syn-

chronous context-free binary relations that are efficient to search and com-

bine/cascade. Examples: machine-translation lattices, parse forests

• Algorithms: Efficient methods for constructing, combining, optimizing and

searching the above and in combination with finite automata.

• Of Special Interest: PDAs that represent regular languages - retain com-

pact, recursive representation but can admit better algorithms

OpenFst PDT Extension: Open-source C++ library: pdt.openfst.org.
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Pushdown Automata

0

1a

2
ε
(

3)
b

L(A) = {anbn | n ∈ N}

• A transition can be labeled by regular symbol or by a stack operation

• Stack operations are represented by pairs of open and close parentheses

– open parenthesis: pushing a symbol on the stack

– close parenthesis: popping from the stack the matching open paren.

• Acceptance condition: parentheses must balance along an accepting path

✄ equivalent to accepting on empty stack at final states
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Dyck Languages

• A Dyck language consists of “well-formed” or “balanced” strings over a

finite number of pairs of parentheses. Thus

( [ ( ) ( ) ] { } [ ] ) ( )

is in the Dyck language over 3 pairs of parentheses.

• Dyck language DA: Let n ∈ N, A = {a1, . . . , an} and A = {a1, . . . , an}.

A string x ∈ (A ∪A)∗ belongs to DA iff it is recognized by the CFG:

S → ǫ, S → SS and S → aSā for all a∈A.

• For b ∈ A ∪A, let

b =

{

ai if b = ai

ai if b = ai

[i.e. ai = ai]

and let cA(x) be the string obtained by iteratively deleting from x all

factors of the form aā with a ∈ A
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Pushdown Automata

• A pushdown automaton A is a 7-uple (Σ,Π,Π, Q,E, I, F ) with

– Σ, Π and Π: input, open parenthesis and close parenthesis alphabets

– Q, I ⊆ Q, F ⊆ Q: states, initial states and final states

– E ⊆ Q× (Σ ∪ Π ∪ Π ∪ {ǫ})×Q: transitions [e = (p[e], i[e], n[e]) ∈ E]

• π = e1 . . . ek ∈ E∗ is a path in A if n[ei] = p[ei] for 1 ≤ i < k

[p[π] = p[e1], n[π] = n[en] and i[π] = i[e1]i[e2] . . . i[en]]

• A string x ∈ Σ∗ belongs to L(A), the language accepted by A, if there

exists a path π such that p[π] ∈ I, n[π] ∈ F , i[π]|Σ = x and i[π]|Π∪Π ∈ DΠ

0

1a

2
ε
(

3)
b

L(A) = {anbn | n ∈ N}
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Weighted Pushdown Transducers

• Each transition e in a weighted pushdown transducer T has additionally:

– an output label o[e] ∈ ∆ ∪Π ∪Π ∪ {ǫ} and

– a weight w[e] ∈ R ∪ {∞}

If i[e] or o[e] is a parenthesis then i[e] = o[e]

• The weight associated by T to a pair of strings (x, y) is

T (x, y) = min
π∈P (x,y)

w[π] with

P (x, y) =
{

π | p[π] ∈ I, n[π] ∈ F, i[π]|Σ = x, o[π]|∆ = y and i[π]|Π∪Π ∈ DΠ

}

0

1a:c/1

2
ε:ε
(:(/1

3):)
b:c/1

T (anbn, c2n) = 3n
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Properties

• Recognition power

– A language is recognizable by a PDA iff it is context-free

– A transduction is recognizable by a PDT iff it is a simple syntax-

directed translation

• Closure properties

– Closed under sum (union), product (concatenation), kleene-closure and

reversal

– Closed under composition/intersection with finite-state transducers/automata

• Decidability results

– Membership (x ∈ L(A)) is decidable

– Equivalence of two PDAs or PDTs is undecidable

– Rationality of L(A) is undecidable

– Existence of equivalent deterministic PDA is undecidable
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Bounded-Stack Pushdown Transducers

• A pushdown transducer T has bounded stack if there exists K ∈ N such

that for any partially balanced path π from the initial state in T the

number of not yet balanced parentheses is less than K:

|cΠ(i[π]|Π∪Π)| < K

✄ If T has bounded stack, then it represents a rational transduction

0

1
(

3

ε

2
a

4(

)

5
b

)

0
1

a

2

ε

(
ε

3

)
ε
b

0

1a

2
ε
(

3)
b

bounded-stack not bounded-stack not bounded-stack

rational rational not rational

a∗b∗ a∗b∗ {anbn|n ∈ N}
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WPDT Algorithms

Union FST alg.

Concatenation/Closure FST alg.

Reversal trivial changes to FST alg.

Inversion/Projection FST alg.

Expansion PDT-specific alg.⋄

Replacement PDT-specific alg.

✄ Composition non-trivial changes to FST alg.

✄Determinization PDT-specifc alg⋄

Epsilon removal FST alg.

✄ Shortest distance PDT-specific alg.⋄

✄ Shortest path PDT-specific alg.⋄

Pruning PDT-specific alg. required

Connection PDT-specific alg. required

✄ described in this talk

⋄Requires bounded-stack input.
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Composition

• Definition:

(T1 ◦ T2)(x, y) = min
z∈Σ∗

(T1(x, z) + T2(z, y))

✄ If T1 is a PDT and T2 is an FST,

then T1 ◦ T2 can be represented by a PDT

• Algorithm:

– Bar-Hillel construction

– Same algorithm as composition of finite-state transducers with ǫ-transitions

→ parentheses are treated as different kind of epsilons

0

1a

2
ε
(

3)
b 0

1a

2
ε

3(

4)

5a

6

ε

b

7(

8)

9a

10

ε

b

11(

12)

13a

14

ε

b

15(

16)
17

ε

b

0 1a
b

2a
b

3a
b

4a
b
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Composition Algorithm

✄ Assuming that T2 has no input-ǫ transitions

• States: (q1, q2) with q1 in T1 and q2 in T2

• Transitions:

– Regular symbol: a ∈ Σ ∪ {ǫ}, b ∈ ∆ and c ∈ Γ ∪ {ǫ}

(q1, a, b, w1, q
′
1) and (q2, b, c, w2, q

′
2) ❀ ((q1, q2), a, c, w1 + w2, (q

′
1, q

′
2))

– Epsilon: a ∈ Σ ∪ {ǫ}

(q1, a, ǫ, w1, q
′
1) and stay in q2 ❀ ((q1, q2), a, ǫ, w1, (q

′
1, q2))

– Parenthesis: a ∈ Π ∪Π

(q1, a, a, w1, q
′
1) and stay in q2 ❀ ((q1, q2), a, a, w1, (q

′
1, q2))

✄ When both sides have epsilons, an epsilon filter generalized to handle

parentheses can be used

• Complexity: O(|T1||T2|) in the worst case
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Determinization Algorithm

• Application of weighted determinization: parentheses in (Π ∪ Π)∗ are

treated as weights over the parenthesis semiring.

• Applies to bounded-stack PDAs (in general undecidable)

Semiring Set ⊕ ⊗ 0 1

Parenthesis (Π ∪Π)∗ ∪ {∞} ∪ · ∞ ǫ

a · a = ǫ if a ∈ Π.
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Shortest Distance and Shortest Path

• Given a bounded-stack PDT, computes

– Shortest Path: the shortest balanced accepting path in T

– Shortest Distance: the weight of the shortest balanced accepting path

in T

• Naive algorithm has exponential complexity

• Idea: Memoize

✄ Similar idea used in shortest path over hypergraphs or RTNs
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Shortest Distance Algorithm

• d[q, s] : minimum weight of a balanced path from s to q

• B[q, a] : set of close parenthesis transitions that can balanced an incoming open

parenthesis transition in q labeled by a ∈ Π

ShortestDistance(T )

1 for each q ∈ Q and a ∈ Π do

2 B[q, a]← ∅

3 GetDistance(T, i) ⊲ i is the unique initial state

4 return d[f, i] ⊲ f is the unique final state

Relax(q, s, w,S)

1 if d[q, s] > w then ⊲ if w is a better estimate of the distance from q to s

2 d[q, s]← w ⊲ update d[q, s]

3 if q 6∈ S then ⊲ enqueue q in S if needed

4 Enqueue(S, q)
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GetDistance(T, s)

1 for each q ∈ Q do

2 d[q, s]←∞

3 d[s, s]← 0

4 Ss ← s

5 while Ss 6= ∅ do

6 q ← Head(Ss)

7 Dequeue(Ss)

8 for each e ∈ E[q] do

9 if i[e] ∈ Σ ∪ {ǫ} then ⊲ i[e] is a regular symbol

10 Relax(n[e], s, d[q, s] + w[e],Ss)

11 elseif i[e] ∈ Π then ⊲ i[e] is an close parenthesis

12 B[s, i[e]]← B[s, i[e]] ∪ {e}

13 elseif i[e] ∈ Π then ⊲ i[e] is an open parenthesis

14 if d[n[e], n[e]] =∞ then

15 GetDistance(T, n[e])

16 for each e′ ∈ B[n[e], i[e]] do

17 Relax(n[e′], s, d[q, s] + w[e] + d[p[e′], n[e]] + w[e′],Ss)
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Shortest Distance Algorithm

• Algorithm can be modified to compute the shortest path through T by

keeping track of a parent pointer

• Complexity of the algorithm depends on the queue discipline; cubic in |T |

if T is acyclic (ignoring stack symbols).

– the number of non-infinite d[q, s] is |Q|2 in the worst case

– for each open parenthesis transition e,

|B[n[e], i[e]]| could be in O(|E|) in the worst case

• When T has been obtained by converting an RTN or an hypergraph into

a PDT, the complexity is linear (O(|T |))

– for each q, there exists a unique s such that d[q, s] is non-infinity

– for each close parenthesis transition e, there exists a unique open paren-

thesis transition e′ s.t. e ∈ B[n[e′], i[e′]]
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Application: Parsing

PDTs can be used to parse and different parsing strategies can be obtained from

different PDT compilations of a CFG. E.g., the grammar:

S → AB, S → CB, C → AS, A → a and B → b

can be parsed with:
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(a) left parser (b) right parser (c) left corner parser

ShortestPath(s ◦ T ) parses input s (e.g. a string or a lattice) with transducer T.
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Application: Machine Translation

Hierarchical machine translation can be expressed as:

ShortestPath(T ◦M)

where T = π2(s ◦ G), s is the source sentence, G is a synchronous context-free

grammar, and M is a n-gram language model. The representation of T determines

the translation strategy:

• T as a CFG/hypergraph: Chiang [2007]

• T as finite-state acceptor: Iglasias, et al.[2009]

• T as a pushdown acceptor: Iglasias, et al.[2011]

Representation Time Complexity Space Complexity

CFG/hypergraph O(|s|3 |G| |M |3) O(|s|3 |G| |M |3)

PDA O(|s|3 |G| |M |3) O(|s|3 |G| |M |2)

FSA O(e|s|
3|G| |M |) O(e|s|

3|G| |M |)
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Weighted Transducers in Speech and Language Processing

IV. Current Research and Conclusion
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Current Research Topics - Core Algorithms I

• Disambiguation

– Removes redundant successful paths

– More efficient than determinization for disambiguation

– Applications: shortest path, n-best, compact lattices
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Current Research Topics - Core Algorithms II

• ’Min’ Determinization

– Determinizes non-functional transducers by retaining only the ’best’ of the

ambiguous outputs (over the tropical semiring)

– Applications: converting search into lookups
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Weighted grapheme-to-phoneme transducer has 3.6K transitions.
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Current Research Topics - Efficiency

• Dynamic Mutation

– Efficiently adding new words and n-grams to optimized, context-dependent

recognition transducers

– Related to deterministic union but more complex

• Linear Automata

– Efficient representation of linear models such as CRFs as finite au-

tomata

– Goal: on-the-fly representation using a minimal state space
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Current Research Topics - Scalability

• Large scale - Distributed Algorithms

– Represent/combine/optimize automata across thousands of machines

– Some algorithms admit a map-reduce solution

– Some algorithms require a more graph-based solution

• Small Scale - More Compact Representations

– Goal: develop a theory of automata entropy

– Find compression algorithms that meet the entropy bounds

– Early promising results with a generalization of Lempel-Ziv

Weighted Transducers in Speech and Language Processing IV: Current Research & Conclusion49



Current Research Topics - Generality

• Multi-stack Automata

– Extend PDTs to allow limited copying

– Two unrestricted stacks equivalent to a Turing machine

– Stack restrictions - allow pushing onto (popping from) the second stack

only if the first is empty

– Leads to mildly context-sensitive languages

• Syntax-directed Transductions

– Pushdown automata can only represent simple syntax-directed trans-

lations (no re-ordering of non-terminals)

– Pushdown processors have proposed to handle the more general case

but are complex

– Applications: hierarchical machine translation
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Conclusion

• Weighted Finite-State Transducers: Provides a compact representation of

rational relations and admits efficient algorithms for their construction,

combination, optimization and search

• Weighted Pushdown Transducers: Provides a compact representation of

(certain) context-free relations and admits efficient algorithms for their

construction, combination, optimization and search, especially when they

underlyingly represent rational relations.
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