Autoregressive model of Hilbert envelope of the signal

Artificial Neural Nets for Deriving Speech Features

conventional artificial neural net

up to 100 ms
of stacked frames
of short-term features

time

DEEP: Some Hierarchical Nets

serial hierarchy (with Joel Pinto)

serio-parallel hierarchy (with Fabio Valente)

Artificial Neural Nets

TANDEM

Unknown Unknowns

The problem is not what you do not know, the problem is what you do not know that you do not know

Machine Learning

Create models of the "world"

1. from labeled (annotated) training data
2. from prior knowledge of what is possible and how likely it is

Find the model that best accounts for the observed data
Assumption: the future is the same as the past

- both the training and the test data are independently and identically obtained samples from the same probability distribution

Unexpected events are hard to deal with because

1. not seen in the training
2. Iow (zero) prior probability

Successfully surviving natural systems attend well to the unexpected

Power of Priors (Language Model)

although some sort	of the computer	can either	way	
hopefully cin-cin	o-bi	computer	connected	with

Unexpected Noise

DEEP: Information in the signal should be extracted in stages, from description of signal features to description of phonetic events.

LONG: Information about underlying speech sounds is spread in time for more than 200 ms

WIDE: There are many ways to form parallel processing streams using different signal projections and different prior assumptions.

Not all processing streams get always corrupted and we need to find ways to find the uncorrupted processing streams.

Information in speech is coded hierarchically (deep) in temporal dynamics (long) and in many redundant dimensions (wide)

Deep, Long, and Wide Neural Nets

Longer is Better

Phonetic classifier accuracy as a function of a time span of an analysis

Fanty, Cole, Roginski NIPS 1992


```
Figure 1: Performance of the phonetic classifier as a function of PLP context and 
```

LONG: Classifying TempoRAI Patterns of Spectral Energies with Sangita Sharma, Pratibha Jain, Honza Cernocky, Pavel Matejka, Petr Schwartz

Each temporal pattern contains most of coarticulation span of speech sound in its center.

Fusion of streams of different carrier frequencies

Wide: Multi-stream Processing

Information in speech is coded in many redundant dimensions.
Not all dimensions get corrupted at the same time.
signal

- Parallel information-providing streams, each carrying different redundant dimensions of a given target.
- A strategy for comparing the streams.
- A strategy for selecting "reliable" streams.

Stream formation

- Different perceptual modalities
- Different processing channels within each modality
- Bottom-up and top-down dominated channels

Comparing the streams ?

- various correlation (distance) measures

Selecting reliable streams ?????

Early Attempts for Multi-Stream Recognition

with Sangita Sharma and Misha Pavel

Monitoring Performance

Fletcher et al
Boothroyd ann Nittrouer
Allen

$$
P(\varepsilon)=\prod_{i} P\left(\varepsilon_{i}\right)
$$

$$
* P_{\text {miss }}=\left(1-P_{1}\right)\left(1-P_{2}\right)
$$

observer - false positives and negatives are possible
$P_{\text {miss_observed }} \neq\left(1-P_{1}\right)\left(1-P_{2}\right)$

Do listeners know when they know?
How to make machine know when it knows ?

$$
\begin{aligned}
& \text { performance } \\
& \text { on training data } \\
& \sim \text { modify } \\
& \text { performance compare } \\
& \text { in test }
\end{aligned} \longrightarrow
$$

Finding Reliable Streams

Streams which yield the best performance on the test data

Classifier can never work better that it does on the data on which it was trained

```
performance
on training data
            choose
            the best
        stream }\leftarrow compar
        combinations
    performance
        in test
```


Evaluating Performance

How often sound classes occur and how
often do they get confused?

$$
A C=1 / N \sum_{i=1}^{N}\left(p_{i}\right)^{r}\left(p_{i}^{\top}\right)^{r}
$$

$\boldsymbol{p}_{\boldsymbol{i}}$ - vector of sound posteriors at i-th time instant
N - time interval of the evaluation
r - th power element-by-element (currently $r=0.1$)

How much sounds classes differ and how fast do they change?
$M(\Delta i)=\frac{\sum_{i=0}^{N-\Delta i} D\left(\mathbf{p}_{i}, \mathbf{p}_{i+\Delta i}\right)}{N-\Delta i}$
$\Delta \mathrm{i}$ - time delay
$D($.$) - symmetric \mathrm{KI}$ divergence

Towards Increasing Error Rates

Why to rock the boat? We have good thing going.

Why to rock the boat?

We have good thing going.

Repetition, fillers, hesitations, interruptions, unfinished and non-gramatical sentences, new words, dialects, emotions, ...

Current DARPA and IARPA programs, research agenda of the JHU CoE HLT, industrial efforts (Google, Microsoft, IBM, Amazon,...)

Signal processing,
neural information processing, information theory, machine learning, ...

$$
\text { \& } \quad \begin{aligned}
& \text { psychophysics, physiology, cognitive } \\
& \text { science, phonetics and linguistics, ... }
\end{aligned}
$$

Engineering and Life Sciences together !

How to Get There?

However, also John Pierce:
(Speech recognition is so far (1969) field of) mad inventors or untrustworthy engineers (because machine needs) intelligence and knowledge of language comparable to those of a native speaker.
.... should people continue work towards speech recognition by machine ? Perhaps it is for people in the field to decide.

Why Am I Working in Machine Recognition of Speech?

Why did I climbed Mt. Everest?
Because it is there !
-Sir Edmund Hilary

Spoken language is one of the most amazing accomplishments of human race.

Implement intelligence and knowledge of language comparable to those of a native speaker!

Don't Follow Leaders, Watch the Parking Meters...

